CIVIL ENGINEERING (CE)

CE Courses

CE 111. Introduction to Civil Engineering. 1 unit
CR/NC
Term Typically Offered: F
Broad overview of the field of civil engineering, including professional societies and their student chapters, professional licensing and registration, professional codes of ethics, the elements of engineering design, and the scope of analysis and design activities undertaken by private- and public-sector civil design professionals. Credit/No Credit grading only. 1 lecture.

CE 112. Design Principles in Civil Engineering. 2 units
Term Typically Offered: W
Prerequisite: MATH 141.
The civil and environmental engineering design process. Illustration and quantification of design alternatives. Practice in creating and evaluating typical designs drawn from different specialty areas of the field. 2 lectures.

CE 113. Computer Aided Drafting in Civil Engineering. 2 units
Term Typically Offered: F, W, SP
Computer-aided drawing (CAD) and related software to display and quantify engineering designs. Elements of engineering design drawings. Related topics in information technology. 2 laboratories.

CE 200. Special Problems. 1-2 units
CR/NC
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Credit/No Credit grading only.

CE 204. Mechanics of Materials I. 3 units
Term Typically Offered: F, W, SP
Prerequisite: ME 211.
Stresses, strains, and deformations associated with axial, torsional, and flexural loading of bars, shafts, and beams. Analysis of elementary determinate and indeterminate mechanical and structural systems. 2 lectures, 1 activity.

CE 207. Mechanics of Materials II. 2 units
Term Typically Offered: F, W, SP
Prerequisite: CE 204.

CE 251. Programming Applications in Engineering. 2 units
Term Typically Offered: F, W, SP
Prerequisite: CE 113, CE 204 and MATH 244.
Concepts from basic programming theory introduced in the context of engineering applications. Topics include the application of programming constructs to demonstrate finite precision calculations, linear systems, linear programming, basic nonlinear systems, plotting, statistics, least squares, approximations, and solve related problems from civil and environmental engineering. 2 activities.

CE 259. Civil Engineering Materials. 2 units
Term Typically Offered: F, W, SP
Prerequisite: CE 204.
Experimental determination of mechanical properties of concrete, asphalt, and soils as required for engineering applications. Experimental verification of assumptions made in mechanics of materials procedures. Use of strain measuring devices. Preparation of technical reports. 2 laboratories.

CE 270. Selected Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Open to undergraduate students and consent of instructor.
Directed group study of selected topics. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

CE 321. Fundamentals of Transportation Engineering. 3 units
Term Typically Offered: F, W, SP
Prerequisite: PHYS 141; CE 259 or graduate standing.
The characteristics and functions of highway, air, rail, transit and other modes of urban and intercity transportation. Fundamentals of transportation design, operations, and planning. Evaluation of costs, benefits, and environmental considerations. 3 lectures.

CE 322. Fundamentals of Transportation Engineering Laboratory. 2 units
Term Typically Offered: F, W, SP
Prerequisite or concurrent: CE 321.
Application of principles of transportation planning, operations, and design. Emphasis on urban transportation planning and operations, and the design of urban and intercity highway and rail facilities. Experimental determination of the physical and mechanical properties of pavement materials through laboratory and field testing. Analysis of data and preparation of testing reports. 2 laboratories.

CE 336. Water Resources Engineering. 4 units
Term Typically Offered: F, W, SP
Prerequisite: ME 341 or ENVE 264. Concurrent: CE 337.
Hydraulics of pile flow. Open channel flow, groundwater, and hydrology. 4 lectures.

CE 337. Hydraulics Laboratory. 1 unit
Term Typically Offered: F, W, SP
Prerequisite: ME 341 or ENVE 264. Concurrent: CE 336.
Application of basic fluid dynamic principles to various mechanical systems. Exposure to experimental problems and techniques with guided laboratory projects related to civil engineering discipline. 1 laboratory.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Term Typically Offered</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to concepts of structural engineering including ASCE7 loads, vertical and lateral load path, flexible and rigid diaphragms, determinate vs indeterminate systems, and the use of computer programs to solve structural engineering problems. 3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 355</td>
<td>Reinforced Concrete Design</td>
<td>4</td>
<td>F, W, SP</td>
<td>CE 259 and CE 352.</td>
</tr>
<tr>
<td></td>
<td>Analytical and design principles of reinforced concrete in designing civil engineering systems. Origin of code requirements. Fundamentals of proportioning. Details of elements and structural systems. 3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 356</td>
<td>Structural Steel Design</td>
<td>4</td>
<td>F, SP</td>
<td>CE 352.</td>
</tr>
<tr>
<td></td>
<td>Design and behavior of the elements of steel structures. Design and analysis of bolted, welded and eccentric connections. Proportioning of members and connections. Introduction to plastic design, end plate connection, composite construction, shear connections and design of composite beams. 3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Theory and practice of planning, scheduling, estimating, and reporting for construction projects. Fundamentals of scheduling logic including critical path, deterministic, and probabilistic scheduling; including the impact of constraints. Identifying resources and estimating time requirements for design activities and project operations. Not open to Architectural Engineering or Construction Management majors. 3 lectures, 1 activity. Crosslisted as CE/CM 371.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 381</td>
<td>Geotechnical Engineering</td>
<td>4</td>
<td>F, W, SP</td>
<td>CE 207, ME 341 or ENVE 264. Concurrent: CE 382 (CE majors only).</td>
</tr>
<tr>
<td></td>
<td>Engineering geology, elementary mass-volume relations, clay-water interaction, soil classification, soil compaction, geostatic stress distributions, 1-D and 2-D steady-state flow, shear strength under drained and undrained conditions. 4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 382</td>
<td>Geotechnical Engineering Laboratory</td>
<td>1</td>
<td>F, W, SP</td>
<td>CE 381.</td>
</tr>
<tr>
<td></td>
<td>Use of standard laboratory test methods to determine physical, mechanical, and hydraulic properties of soil. 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 400</td>
<td>Special Problems</td>
<td>1-2</td>
<td>F, W, SP</td>
<td>Consent of department chair.</td>
</tr>
<tr>
<td></td>
<td>Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 401</td>
<td>Advanced Mechanics of Materials</td>
<td>4</td>
<td>TBD</td>
<td>CE 406 or ME 328.</td>
</tr>
<tr>
<td></td>
<td>Introduction to linear elasticity as a means for development of reduced order theories such as torsion, columns, and plates from the general three-dimensional continuum. Energy methods as well as the application and limitation of these theories. 4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 404</td>
<td>Applied Finite Element Analysis</td>
<td>4</td>
<td>F, W, SP</td>
<td>BMED 410 and CE 207; or CE 406; or ME 328.</td>
</tr>
<tr>
<td></td>
<td>Finite element based solutions to engineering problems with an emphasis on elastostatic problems in structural mechanics. The power and pitfalls associated with the finite element method highlighted through practical modeling assignments. Introduces the use of commercial finite element codes. 3 lectures, 1 laboratory. Crosslisted as BMED/CE/ME 404.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 405</td>
<td>Concrete Materials</td>
<td>4</td>
<td>TBD</td>
<td>CE 259.</td>
</tr>
<tr>
<td></td>
<td>Supplementary cementitious materials and chemical admixtures and their incorporation into concrete mix designs. Design and testing of concrete for durability and other specialized properties. 3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 406</td>
<td>Structural Analysis</td>
<td>5</td>
<td>F</td>
<td>CE 352.</td>
</tr>
<tr>
<td></td>
<td>Structural analysis of frames, trusses, and combined systems. Modern structural analysis theorems are presented along with discussion of their relation to classical methods. Specific topics include virtual forces, virtual displacements, compatibility, constraints and matrix formulations. Course may be offered in classroom-based or online format. 4 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 407</td>
<td>Structural Dynamics</td>
<td>4</td>
<td>TBD</td>
<td>CE 406 or ME 212.</td>
</tr>
<tr>
<td></td>
<td>Effect of vibration and transient loads on structural elements. Dynamics load factors, support motion, damping and natural frequencies of multidimensional structural systems. Modal analysis. 3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 413</td>
<td>Advanced Civil Computer-Aided Site Design</td>
<td>2</td>
<td>F, W</td>
<td>BRAE 239 and CE 113.</td>
</tr>
<tr>
<td></td>
<td>Apply advanced CAD software to develop design techniques and convey the completed design on a set of plans; site coordination, basic road design, grading, and utility design. 2 laboratories.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 421</td>
<td>Traffic Engineering</td>
<td>4</td>
<td>F</td>
<td>CE 321.</td>
</tr>
</tbody>
</table>
CE 422. Highway Geometrics and Design. 4 units
Term Typically Offered: W
Prerequisite: CE 321.
Alignment location and safe geometric design of highways. Earthwork and drainage related to highway. Theory and practice in design of alignments, highway cross-sections, intersections, interchanges, and freeways in urban and rural areas. Application of advanced computer software to highway geometrics. 2 lectures, 2 laboratories.

CE 423. Intelligent Transportation Systems. 4 units
Term Typically Offered: SP
Prerequisite: CE 321 or graduate standing.
Specification and operation of Intelligent Transportation Systems (ITS). Traffic surveillance and control systems including applications to freeways, urban streets, rural highways, and public transportation. Standards include the National Architecture for ITS. 3 lectures, 1 laboratory.

CE 424. Public Transportation. 4 units
Term Typically Offered: W
Prerequisite: CE 321.
Interdisciplinary aspects of public transportation problems, systems-team design approach to solutions. History and present state of public transportation; role of public transportation in urban environment; legislative, political, social, and economic aspects of public transportation systems. Methodology and procedures for transit planning. Review of transit studies. 3 lectures, 1 laboratory.

CE 425. Introduction to Railway Engineering. 4 units
Term Typically Offered: SP
Prerequisite: CE 321, and CE 381.
Introduction to railroad and railway system analysis and design. Railroads, rail transit and high speed rail applications. Track foundation design for various conditions. Approaches to railway analysis and design and an introduction to railway traffic control and signaling. 4 lectures.

CE 431. Coastal Hydraulics I. 4 units
Term Typically Offered: W
Prerequisite: ME 341 or ENVE 264.
Waves and their characteristics, types of waves, water wave theories, orbital velocities, refraction of waves, wave diffraction, wave reflection, application of linear theory to wave forces on cylindrical structures, submerged pipelines and vertical flat barriers (sea walls), wave uprush, rubble mound breakwaters. 4 lectures.

CE 432. Coastal Hydraulics II. 4 units
Term Typically Offered: TBD
Prerequisite: CE 431.
Reformed breaker height determination, wave runup analysis using a reformed breaker height. Wave setback analysis. Pile height determination. Criteria for types of breaking waves. Revetment analysis, rip-rap revetment design, wave forces on pilings. 4 lectures.

CE 433. Open Channel Hydraulics. 4 units
Term Typically Offered: F
Prerequisite: CE 336.
Analysis and characteristics of flow in open channels; critical flows; uniform flow; gradually varied flow; channel design problems, channel transitions and controls. Rapidly varied flow, hydraulic jump and energy dissipaters. Unsteady flows, waves and wave propagation, flood routing. Applications of numerical methods in hydraulic engineering. 4 lectures.

CE 434. Groundwater Hydraulics and Hydrology. 4 units
Term Typically Offered: F, SP
Prerequisite: CE 336.

CE 435. Engineering Hydrology. 4 units
Term Typically Offered: F
Prerequisite: CE 336.
Analysis of hydrologic cycle components such as precipitation, infiltration and evaporation. Rainfall-runoff analysis to determine peak flows and runoff hydrographs. Hydrologic river and reservoir routings and their applications for flood plain management. Application of frequency analysis methods to determine design rainfalls and design flows. 4 lectures.

CE 440. Hydraulic Systems Engineering. 4 units
Term Typically Offered: F, W
Prerequisite: CE 336.
Water and wastewater flows. Design of water distribution systems, transmission and storage reservoirs, wastewater collection systems, and storm water systems. Pumps and pump systems, flow measurements. Water sources for municipal supply. 3 lectures, 1 laboratory.

CE 454. Structural Design. 4 units
Term Typically Offered: W
Prerequisite: CE 355 and CE 356.
Design of reinforced concrete, steel and timber structures. Loading standards, code design methods, connection design. Comprehensive design projects. 2 lectures, 2 laboratories.

CE 455. Design of Timber Structures. 4 units
Term Typically Offered: F
Prerequisite: CE 355 or CE 356.
Analysis and design of timber structures with emphasis on construction methodology, and material behavior. Topics include: physical and mechanical properties of structural lumber and glued laminated timber; lateral load paths; diaphragms; connections; shear wall design; and combined load design. 3 lectures, 1 laboratory.
CE 456. Seismic Principles for Civil and Environmental Engineering. 4 units
Term Typically Offered: TBD
Prerequisite: CE 207.

Basic principles in seismic analysis and design of civil and environmental systems. Seismological aspects of earthquakes. Simple concepts in structural dynamics. Simplified code-based analysis and design. 4 lectures. Not open to students with credit in CE 557.

CE 457. Bridge Engineering. 4 units
Term Typically Offered: SP
Prerequisite: CE 355.

CE 458. Fiber Reinforced Polymer (FRP) Design. 4 units
Term Typically Offered: TBD
Prerequisite: CE 355. Concurrent: CE 356.

Properties and mechanical characteristics of Fiber Reinforced Polymer (FRP) composite materials; applications in civil engineering structures as primary or secondary reinforcement; and design techniques based on newly developed ACI 440 design guidelines and worldwide experience in FRP design. Not open to students with credit in CE 558. 3 lectures, 1 laboratory.

CE 459. FRP Strengthening of Reinforced Concrete Structures. 4 units
Term Typically Offered: TBD
Prerequisite: CE 355.

Flexural and shear strengthening reinforced and prestressed concrete members using fiber reinforced polymer composite plates and laminates; seismic repair and rehabilitation of columns, slabs, beams and structures. Focus on design philosophy and design methodology, based on the current understanding of FRP-strengthening techniques. Not open to students with credit in CE 556. 3 lectures, 1 laboratory.

CE 465. Civil Engineering Professional Practice. 1 unit
Term Typically Offered: F
Prerequisite: Senior standing and consent of instructor.

Advising for Senior Design Project and examination of the non-technical and professional issues engineering design professionals regularly encounter. Topics include: communications styles and assertiveness, technical communications (oral and written), lifelong learning, contemporary civil engineering issues, leadership, ethics, and personal and project management. 1 activity.

CE 466. Senior Design Project I. 3 units
Term Typically Offered: W
Prerequisite: CE 321, CE 322, CE 336, CE 337, CE 355, CE 381, CE 382, CE 465, and consent of instructor.

Work on multi-disciplinary teams to complete an integrated civil design project. Focus on formal instruction, through project based learning, on selected topics in geotechnical, structural, transportation, and water resources engineering design. Non-technical topics include team building, technical communications, and professional practice skills that must be mastered to become a successful design professional. 2 lectures, 1 laboratory.

CE 467. Senior Design Project II. 3 units
Term Typically Offered: SP
Prerequisite: CE 466.

Continuation of work on multi-disciplinary teams to complete an integrated civil design project started in CE 466. Focus of formal instruction on selected topics in geotechnical, structural, transportation, and water resources engineering design culminating with oral and written presentations of Senior Design projects. 2 lectures, 1 laboratory.

CE 468. Community Engineering Senior Design Project I. 3 units
Term Typically Offered: TBD
Prerequisite: CE 321, CE 322, CE 336, CE 337, CE 355, CE 381, CE 382 and CE 465.

Two-part series. Student teams work in cooperation with a local community organization to complete an integrated civil design project. Projects representative of those encountered in professional practice. Focus on professional as well as design issues. Volunteer service required. 2 lectures, 1 laboratory.

CE 469. Community Engineering Senior Design Project II. 3 units
Term Typically Offered: TBD
Prerequisite: CE 468.

Two-part series. Student teams work in cooperation with a local community organization to complete an integrated civil design project. Projects representative of those encountered in professional practice. Focus on professional as well as design issues. Volunteer service required. 2 lectures, 1 laboratory.

CE 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

CE 471. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 laboratories.

CE 474. Environmental Compliance and Permitting. 2 units
Term Typically Offered: F
Prerequisite: Senior standing.

Fundamentals of State and Federal environmental laws essential to getting Civil Engineering projects permitted. 2 lectures.

CE 475. Civil Infrastructure and Building Systems. 4 units
Term Typically Offered: F, W
Prerequisite: Senior standing in CE or ARCE.

Principles and practices for the sustainable design, fabrication, and installation of systems for the civil infrastructure and building; including structural, air/gas, water/wastewater, electrical, and control systems. Methods and materials used for fabrication and installation; including cost and schedule considerations. 4 lectures. Crosslisted as ARCE/CE 475.
CE 481. Analysis and Design of Shallow Foundations. 4 units
Term Typically Offered: F, W, SP
Prerequisite: CE 381 and CE 382.

CE 486. Introduction to Geological Engineering. 4 units
Term Typically Offered: TBD
Prerequisite: CE 381, CE 382, and GEOL 201.
Identification and characterization of consolidated geologic materials for the purpose of civil analysis and design. Interpretation of geologic maps, cross sections, and reports. Interpretation of aerial photographs. Engineering considerations important in dealing with transported soils. 4 lectures.

CE 487. Design of Foundations and Slopes in Rock. 4 units
Term Typically Offered: TBD
Prerequisite: CE 381, CE 382, and GEOL 201.

CE 488. Engineering Risk Analysis. 4 units
Term Typically Offered: F
Prerequisite: CE 381 and STAT 312.
Introduction to the basic concepts of probability theory, statistics, and decision theory as they pertain to problems in civil and environmental engineering. Emphasis placed on the use of probabilistic modeling, Bayesian statistics, risk analysis, and decision theory. 4 lectures.

CE 493. Cooperative Education Experience. 2 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 6 units.

CE 494. Cooperative Education Experience. 6 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 18 units.

CE 495. Cooperative Education Experience. 12 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 24 units.

CE 500. Individual Study. 1-3 units
Term Typically Offered: TBD
Prerequisite: Consent of department chair, graduate advisor and supervising faculty member.
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Total credit limited to 4 units.

CE 501. Advanced Matrix Analysis of Structures I. 4 units
Term Typically Offered: F
Prerequisite: CE 406.

CE 504. Finite Element Analysis. 4 units
Term Typically Offered: SP
Prerequisite: CE/ME 404 and CE 511 or ME 501 or consent of instructor.
Linear finite element theory and analysis. Strong, weak and variational formulations. Physical and isoparametric spaces. Error estimates and numerical integration. Development of finite element algorithms. Use of commercial finite element codes to illustrate course concepts including modeling issues and limitations. 3 lectures, 1 laboratory. Crosslisted as CE/ME 504.

CE 511. Continuum Mechanics and Elasticity. 4 units
Term Typically Offered: TBD
Prerequisite: Graduate standing.
CE 513. Inelastic Stress Analysis. 4 units
Term Typically Offered: TBD
Prerequisite: ME 501 or CE 511.

CE 521. Highway Pavement Designs. 4 units
Term Typically Offered: TBD
Prerequisite: CE 321, CE 329, CE 381 or graduate standing.

Theories, principles, and procedures in the structural design of highway pavements. Design of flexible and rigid pavements. Performance of flexible and rigid pavements in the field and the characterization of pavement materials. Practical and direct exposure to laboratory testing of pavement materials. 3 lectures, 1 laboratory.

CE 523. Transportation Systems Planning. 4 units
Term Typically Offered: F
Prerequisite: CE 321 or graduate standing.

Planning of urban and regional multimodal transportation systems. Modeling of transportation networks and travel demand. Travel survey design. Urban data systems. Evaluation of alternatives based on economic, social, technological, and other factors. 2 lectures, 2 laboratories.

CE 524. Pavement Performance and Management Systems. 4 units
Term Typically Offered: TBD
Prerequisite: CE 321, CE 322, CE 259.

Introduction to pavement management; pavement distress data collection; deflection measurements and analysis; pavement performance modeling; pavement structure design; maintenance planning and rehabilitation strategies; prioritization and optimization; computer applications in pavement management. 2 lectures, 2 laboratories.

CE 525. Airport Planning and Design. 4 units
Term Typically Offered: W
Prerequisite: CE 321 or graduate standing.

Historical background of aviation and airport development; financing; estimating demand; aircraft characteristics; airport capacity; airspace and air traffic control; site selection; airport configuration; geometric design of landing area; planning and development of terminal areas; lighting; pavement design and drainage. 3 lectures, 1 laboratory.

CE 526. Transportation Safety. 4 units
Term Typically Offered: W
Prerequisite: CE 321, CE 322, STAT 312.

Introduction to nature and extent of transportation safety problem worldwide and in the United States. Several sub-areas of transportation safety: road safety, human factors, vehicle safety; crash data collection and management; safety planning; hot spot identification; methodologies for conducting transportation accident studies; statistical applications to accident data; predictive model building; "before-after" studies; countermeasure design. 3 lectures, 1 laboratory.

CE 527. Sustainable Mobility. 4 units
Term Typically Offered: SP
Prerequisite: CE 321 or CRP 435 or consent of instructor.

Presentation and analysis of concepts and designs for sustainable mobility from a global-to-local, interdisciplinary perspective, including pedestrians, bicyclists, and public transportation. Addresses economy, environment, and equity (social issues) through lectures, panels, excursions and a planning/design project in San Luis Obispo County. 3 lectures, 1 laboratory.

CE 528. Transportation Economics and Analysis. 4 units
Term Typically Offered: TBD
Prerequisite: CE 321 or graduate standing.

Principles of engineering systems analysis and applications to transportation using examples from different modes. Identification of transportation benefits, costs, user and non-user impacts, transportation cost models, pricing, and optimization. 3 lectures, 1 laboratory.

CE 529. Modeling and Simulation in Transportation. 4 units
Term Typically Offered: SP
Prerequisite: CE 321 or graduate standing.

Theory and operation of transportation systems, the systems approach, simulation techniques. Use of available software packages. Simulation model development, calibration and use. 2 lectures, 2 laboratories.

CE 533. Advanced Water Resources Engineering. 4 units
Term Typically Offered: SP
Prerequisite: CE 336 or graduate standing.

Matrix and simulation methods in hydrology, statistical studies in hydrology and their applications to civil engineering problems. Generalized hydrologic characteristics. Hydrologic simulation, computer applications, urban and small watershed hydrology, macroscopic and microscopic approach. Storm water management models. Hydrologic design. 4 lectures.

CE 535. Water Resources Systems Planning and Analysis. 4 units
Term Typically Offered: TBD
Prerequisite: CE 336 or graduate standing.

Water resources planning, development, system analysis and optimization. Dynamic programming, multi-objective water resource systems. 4 lectures.

Term Typically Offered: W
Prerequisite: CE 336 or graduate standing.

Modeling, design and analysis of water, wastewater, stormwater systems. Integration of water resource systems with Geographic Information Systems (GIS). 3 lectures, 1 laboratory.

CE 537. Groundwater Contamination. 4 units
Term Typically Offered: W
Prerequisite: CE 434. Corequisite: ENVE 331.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Term Typically Offered</th>
<th>Prerequisite(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 538</td>
<td>Urban Water Systems</td>
<td>4</td>
<td>SP</td>
<td>CE 440 or graduate standing.</td>
</tr>
<tr>
<td></td>
<td>Integration of water delivery, wastewater collection,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>drainage systems, and associated treatment components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in urbanizing areas. Relationships between surface and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>groundwater elements of water sources and disposal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of current design models to quantify the benefits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of non-traditional options. 4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 539</td>
<td>Environmental Hydraulics</td>
<td>4</td>
<td>W</td>
<td>CE 336 or graduate standing.</td>
</tr>
<tr>
<td></td>
<td>Application of fluid mechanics principles to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>environmental flows. Emphasis on advection,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dispersion, stratification and mixing effects.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stratified flows, turbulent jets and plumes,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wastewater and thermal diffusers, cooling ponds and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>channels, control of environmental problems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 552</td>
<td>Analysis and Seismic Design of Reinforced Concrete</td>
<td>4</td>
<td>SP</td>
<td>CE 454. Recommended: Concurrent enrollment in CE 557.</td>
</tr>
<tr>
<td></td>
<td>Emphasis placed on reinforced concrete behavior and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>seismic design. Topics include moment curvature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis and plastic hinge modeling, strut and tie,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design of structural walls, design of concrete moment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>frames and seismic detailing. 4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 553</td>
<td>Ductile Design of Steel Structures</td>
<td>4</td>
<td>W</td>
<td>CE 356 and senior or graduate standing. Recommended: CE 454 and CE 407.</td>
</tr>
<tr>
<td></td>
<td>Plastic analysis and capacity design principle;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>design of ductile steel structures including</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>moment frames, eccentrically braced frames,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>concentrically braced frames, and steel plate shears</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>walls according to the AISC Seismic Provisions for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural Steel Buildings. 3 lectures, 1 activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 555</td>
<td>Advanced Civil Engineering Materials Laboratory</td>
<td>2</td>
<td>TBD</td>
<td>CE 259 or graduate standing.</td>
</tr>
<tr>
<td></td>
<td>Fundamental properties of new and advanced materials.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental techniques. Fracture characteristics and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>composite response of cement matrix composites. New</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>materials and products to advanced applications such</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as automation. 2 laboratories.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 556</td>
<td>Advanced Fiber Reinforced Polymer (FRP) Strengthening</td>
<td>4</td>
<td>TBD</td>
<td>CE 355.</td>
</tr>
<tr>
<td></td>
<td>of Reinforced Concrete Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flexural and shear strengthening reinforced and pre-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stressed concrete members using FRP composite laminat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>es and plates; seismic repair and rehabilitation of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>columns, beams, slabs and whole structures. Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>philosophies based on the current ACI 440 and the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>most up to date research in FRP composites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Durability, fire protection and blast mitigation of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>structures utilizing FRP laminates. Not open to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students with credit in CE 459. 3 lectures, 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 557</td>
<td>Seismic Analysis and Design for Civil Engineers</td>
<td>4</td>
<td>SP</td>
<td>CE 407.</td>
</tr>
<tr>
<td></td>
<td>Extension of the basic principles of structural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dynamics to analysis of civil structures (buildings,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bridges, tanks, etc.) to earthquake loading. Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>based (Uniform Building Code and AASHTO) earthquake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>resistant design of civil structures. Not open to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students with credit in CE 456. 3 lectures, 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 558</td>
<td>Advanced Fiber Reinforced Polymer (FRP) Design</td>
<td>4</td>
<td>TBD</td>
<td>CE 355.</td>
</tr>
<tr>
<td></td>
<td>Properties and mechanical characteristics of FRP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>composites and design methodologies based on the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>current understanding and usage of FRP composites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applications of composite rebars in civil engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>structures as primary reinforcement. Design and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis of reinforced concrete structures utilizing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRP rebars based on the ACI 440 design guidelines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not open to students with credit in CE 458. 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 559</td>
<td>Prestressed Concrete Design</td>
<td>4</td>
<td>W</td>
<td>CE 355 or graduate standing.</td>
</tr>
<tr>
<td></td>
<td>Advanced analysis, design and behavior of prestressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and precast concrete elements and structures. Origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of code requirements. Detailed design of prestressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete components of civil engineering systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for buildings and highway construction. Creep and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>shrinkage of concrete and relaxation of steel applied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to prestressing losses. 4 lectures.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 570</td>
<td>Selected Advanced Topics</td>
<td>1-4</td>
<td>TBD</td>
<td>Princeton for advanced students. Open to graduate students. Class Schedule will</td>
</tr>
<tr>
<td></td>
<td>Directed group study of selected topics for advanced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students. Class Schedule will list topic selected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit limited to 8 units. 1-4 seminars.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 571</td>
<td>Selected Advanced Laboratory</td>
<td>1-4</td>
<td>TBD</td>
<td>Graduate standing or consent of instructor.</td>
</tr>
<tr>
<td></td>
<td>Directed group laboratory study of selected topics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for advanced students. Open to undergraduate and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>graduate students. Class Schedule will list topic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>selected. Total credit limited to 8 units. 1-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>laboratories.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 581</td>
<td>Advanced Geotechnical Engineering</td>
<td>4</td>
<td>SP</td>
<td>CE 481 or graduate standing.</td>
</tr>
<tr>
<td></td>
<td>Advanced topics in saturated flow, unsaturated flow,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and consolidation. Stress-strain-deformation response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of soils under both drained and undrained loading.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional and advanced laboratory strength testing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 lectures, 1 laboratory.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CE 583. Geotechnical Earthquake Engineering. 4 units
Term Typically Offered: W
Prerequisite: CE 481 and CE 407 or graduate standing.

CE 584. Lateral Support Systems. 4 units
Term Typically Offered: TBD
Prerequisite: CE 481 or graduate standing.

CE 585. Slope Stability Analysis. 4 units
Term Typically Offered: SP
Prerequisite: CE 481 or graduate standing.

CE 586. Analysis and Design of Deep Foundations. 4 units
Term Typically Offered: W
Prerequisite: CE 481 or graduate standing.

Bearing capacity and settlement analysis of drilled shafts and driven piles. Analysis and design of single piles and pile groups for vertical, lateral, and combined loading. Construction procedures, field inspection, and load-testing. Computer-aided analysis and design. 4 lectures.

CE 587. Geoenvironmental Engineering. 4 units
Term Typically Offered: SP
Prerequisite: CE 381.

Principles for containment applications. Engineering properties of soils and geosynthetics and their interaction with contaminants and wastes; analysis of geosynthetics used in containment facilities; liners; covers; leachate and gas collection systems; contaminant transport; and monitoring systems. 4 lectures.

CE 588. Ground Improvement. 4 units
Term Typically Offered: TBD
Prerequisite: CE 381, CE 382, and CE 481.

Ground improvement applications investigated for modification of geomechanical and hydraulic properties of soils. Engineering properties of soft ground and high water content materials; mechanical, chemical, and thermal stabilization investigated for foundation and environmental remediation applications. 4 lectures.

CE 589. Geosynthetics Engineering. 4 units
Term Typically Offered: F
Prerequisite: CE 481.

Geosynthetics applications within civil engineering. Design content for geotechnical, geoenvironmental, and transportation applications. Manufacturing processes, material properties, interaction with soils, and service conditions. 4 lectures.

CE 591. Graduate Seminar I. 1 unit
Term Typically Offered: F
Prerequisite: Graduate standing.

Preparation for graduate studies and engineering careers. Further development of oral and written communication skills. 1 seminar.

CE 592. Graduate Seminar II. 1 unit
Term Typically Offered: W
Prerequisite: CE 591 and graduate standing.

Current research activities and analysis/design philosophies in civil and environmental engineering practice. Development of oral and written presentation skills. 1 seminar.

CE 593. Cooperative Education Experience. 2 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Graduate standing and consent of instructor.

Advanced study analysis and part-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only.

CE 594. Cooperative Education Experience. 6 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Graduate standing and consent of instructor.

Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only.

CE 595. Cooperative Education Experience. 12 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Graduate standing and consent of instructor.

Advanced study analysis and full-time work experience in student’s career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. A fully-developed formal report and evaluation by work supervisor required. Credit/No Credit grading only.
CE 596. Comprehensive Examination. 1 unit
CR/NC
Term Typically Offered: F, W, SP
Prerequisite: Graduate standing. Recommended: Student should be in the final quarter of completing graduate coursework (45 units of 400 and 500 level coursework) and prepared to take the MS exam.

Comprehensive exam for a non-thesis master’s student. The comprehensive examination assesses the student’s ability to integrate knowledge, show critical and independent thinking, and demonstrate mastery of the subject matter. Timing of the comprehensive exam shall be scheduled with the faculty advisor per department guidelines.

CE 599. Design Project (Thesis). 1-9 units
Term Typically Offered: F, W, SP
Prerequisite: Graduate standing.

Each individual or group will be assigned a project for solution under faculty supervision as a requirement for the master’s degree, culminating in a written report/thesis.