BIOMEDICAL ENGINEERING (BMED)

BMED Courses

BMED 101. Introduction to the Biomedical Engineering Major. 1 unit
Term Typically Offered: F
Prerequisite: Biomedical or General Engineering Freshmen.
Introduction to major topics in Biomedical Engineering. Time management, study skills and class scheduling necessary for academic success. Overview of university services. Professional pathways and ethics. Review of career opportunities. 1 seminar.

BMED 102. Introduction to Biomedical Engineering Analysis. 1 unit
Term Typically Offered: W
Prerequisite: BMED 101 and MATH 141.
General introduction to bioengineering analysis applied to representative topics in biomechanics, biofluidics, bioinstrumentation, biomaterials, biotechnology, and related areas. Review of technological needs, testing procedures, governmental regulation, quality of life, and ethical issues. 1 seminar.

BMED 212. Introduction to Biomedical Engineering Design. 3 units
Term Typically Offered: F, W, SP
Prerequisite: MATH 143.
General introduction to bioengineering design, including examples of engineering analysis and design applied to representative topics in biomechanics, bioinstrumentation, biomaterials, biotechnology, and related areas. A review of technological needs, design methodology, testing procedures, statistical analysis, governmental regulations, evaluation of costs and benefits, quality of life, and ethical issues. 2 lectures, 1 laboratory.

BMED 213. Bioengineering Fundamentals. 2 units
GE Area B2
Term Typically Offered: F, W, SP
Prerequisite: MATH 142; for engineering students only. Corequisite: BIO 213. Recommended: CHEM 124.
Treatment of the engineering applications of biology. Genetic engineering and the industrial application of microbiology. Systems physiology with engineering applications. Structure and function relationships in biological systems. The impact of life on its environment. Course may be offered in classroom-based or online format. 2 lectures. Crosslisted as BMED/BRAE 213. Fulfills GE B2.

BMED 270. Selected Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Open to undergraduate students and consent of instructor.
Directed group study of selected topics. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

BMED 310. Biomedical Engineering Measurement and Analysis. 4 units
Term Typically Offered: F, W
Prerequisite: EE 201; and CPE/CSC 101, CSC 231, CSC 232, or CSC 234.
Fundamentals of biomedical engineering analysis. Use and application of tools and analytical methods used by bioengineers. 3 lectures, 1 laboratory.

BMED 330. Intermediate Biomedical Design. 4 units
Term Typically Offered: SP
Prerequisite: MATE 210, ME 328, STAT 312. Recommended: BMED 420, BMED 460.
Design of biomedical devices and systems using various machine elements and components including gears, welded connections, prime movers. Decision modeling based on technical and economic feasibility. 3 lectures, 1 laboratory.

BMED 355. Electrical Engineering Concepts for Biomedical Engineering. 4 units
Term Typically Offered: W
Prerequisite: EE 201, MATH 344.
Introduction to electrical engineering concepts for biomedical engineers. Continuation of basic circuit analysis. Steady state AC circuit analysis and phasor concepts. Application of the Laplace Transform to transient circuit analysis. Introduction to digital logic gates, combinational and sequential logic circuits. 4 lectures.

BMED 400. Special Problems for Advanced Undergraduates. 2-4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: ME 212; junior standing; and consent of department chair.
Individual investigation, research, studies, or surveys of selected problems. Total degree credit limited to 4 units. Total credit limited to 6 units.

BMED 401. Biomedical Entrepreneurship. 4 units
Term Typically Offered: W
Prerequisite: Senior standing and engineering major.
Identification and evaluation of commercial opportunities in the healthcare industry. Methods necessary for rapid iteration and market validation of early-stage prototypes, with emphasis on issues critical to biomedical products, including intellectual property, FDA submission, funding sources, and business models. 3 lectures, 1 laboratory.

BMED 404. Applied Finite Element Analysis. 4 units
Term Typically Offered: F, W, SP
Prerequisite: BMED 410 and CE 207; or CE 406; or ME 328.
Finite element based solutions to engineering problems with an emphasis on elastostatic problems in structural mechanics. The power and pitfalls associated with the finite element method highlighted through practical modeling assignments. Introduces the use of commercial finite element codes. 3 lectures, 1 laboratory. Crosslisted as BMED/CE/ME 404.

BMED 410. Biomechanics. 4 units
Term Typically Offered: W, SP
Prerequisite: BMED 310, CE 204, and ME 212.
Introduction to physiological systems, with emphasis on structure and function of major tissues and organs. Application of mechanics to understand the behavior of these tissues and organs at gross and microscopic levels. Bioelastic solids. Rigid body biomechanics. Biofluids, basic mechanical properties of collagen and elastin, bone, cartilage, muscles, blood vessels, and other living tissues. Application of continuum mechanics to hard and soft tissues. Biomechanical engineering design for clinical applications. 3 lectures, 1 laboratory.
BMED 420. Principles of Biomaterials Design. 4 units
Term Typically Offered: W, SP
Prerequisite: BMED 310, CE 204, and MATE 210.

BMED 425. Biomedical Engineering Transport. 4 units
Term Typically Offered: F, SP
Prerequisite: ME 302 and ME 341.

BMED 430. Biomedical Modeling and Simulation. 2 units
Term Typically Offered: F, W
Prerequisite: BMED 310.

Computational methods for anatomical modeling and boundary value problems in the biomechanics of tissues and biomedical devices. Nonlinear biodynamics, heat flow, cardiac impulse propagation, anatomic modeling, and biomechanics. 1 lecture, 1 laboratory.

BMED 432. Micro/Nano System Design. 4 units
Term Typically Offered: F
Prerequisite: BMED 212 or MATE 210.

Fundamentals of designing micro/nano scale systems employing sensors, actuators and intelligent controls. Explore mechanics, electronics, heat transfer, photonics, fluid mechanics and biometrics at the micrometer and nanometer scale. Discover how scaling impacts design criteria. Investigate the integration of science and engineering and evaluate applications in living systems. Not open to students with credit in MATE 550. 4 lectures.

BMED 434. Micro/Nano Fabrication. 3 units
Term Typically Offered: W
Prerequisite: BMED 212 or MATE 210.

Fabrication science and technology for creating micro and nano scale devices. Explore basic processes such as oxidation, diffusion, ion implantation, etching, chemical and physical vapor deposition, photolithography. Develop an understanding of the science of each process and how to select the right steps for fabricating electronic, photon and micro-electro-mechanical systems devices. 3 lectures. Crosslisted as BMED 434/EE 423/MATE 430.

BMED 435. Microfabrication Laboratory. 1 unit
Term Typically Offered: W
Corequisite: BMED 434/EE 423/MATE 430.

Application of basic processes involved in microfabrication: cleanroom protocol, oxidation, diffusion, photolithography etching and sputtering. Explore process development through fabrication of electronic, photonic or microfluidic devices. Each student will be part of a team that will fabricate and test a device. 1 laboratory. Crosslisted as BMED/MATE 435.

BMED 436. Characterization of Micro/Nano Scale Structures. 4 units
Term Typically Offered: SP
Prerequisite: BMED 212 or MATE 210.

Fundamentals of material's surface analysis techniques for exploring structure and composition of micro/nano scale features and films will be assessed. Students will develop data analytics for deciding which technique to apply for morphological, elemental or chemical composition analysis. 4 lectures.

BMED 440. Bioelectronics and Instrumentation. 4 units
Term Typically Offered: F, W
Prerequisite: BMED 310 and EE 201.

BMED 445. Biopotential Instrumentation. 4 units
Term Typically Offered: SP
Prerequisite: BMED 440.

Focus on the principles associated with instrumentation used to detect surface biopotentials. Emphasis on circuit level design and laboratory implementation of systems used to detect ECG, EMG and EEG signals. Development of practical experience with analog electronic instrumentation used in the design and testing process. A system level design project related to surface biopotential detection and recording. 2 lectures, 2 laboratories.

BMED 450. Contemporary Issues in Biomedical Engineering. 4 units
Term Typically Offered: F, W
Prerequisite: Senior standing in Biomedical Engineering.

Current and evolving topics in biomedical engineering, including medical and industrial applications. Exploration of contemporary issues in biomedical engineering, including technical and societal implications. The Schedule of Classes will list topic selected. Total credit limited to 16 units. 4 lectures.

BMED 455. Biomedical Engineering Design I. 4 units
Term Typically Offered: F, W
Prerequisite: BMED 410.

Engineering design methodology, design process, project planning, decision making, modeling, construction, and testing of an open-ended design project. Preparation of formal engineering reports. Statistical analysis. Governmental regulations. Bioethical issues. 2 lectures, 2 laboratories.
BMED 456. Biomedical Engineering Design II: Senior Project. 4 units
Term Typically Offered: W, SP
Prerequisite: BMED 455.

Engineering design methodology, design process, project planning, decision making, modeling, construction, and testing of an open-ended design project. Preparation of formal engineering reports. Statistical analysis. Governmental regulations. Bioethical issues. 2 lectures, 2 laboratories.

BMED 459. Senior Thesis. 4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: senior standing, and consent of instructor.

Selection and completion of senior thesis under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Thesis results presented in a formal report. Minimum commitment of 120 hours.

BMED 460. Engineering Physiology. 4 units
Term Typically Offered: F, W, SP
Prerequisite: BMED 310 and either BIO 231 or BIO 232; or graduate standing.

Physiology for biomedical engineering students, with an emphasis on control mechanisms and engineering principles. Engineering aspects of basic cell functions; biological control systems; muscle; neural; endocrine, and circulatory systems; digestive, respiratory, renal, and reproductive systems; regulation of metabolism, and defense mechanisms. 3 lectures, 1 laboratory.

BMED 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

BMED 471. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 laboratories.

BMED 481. Senior Project Design Laboratory I. 1 unit
Term Typically Offered: TBD
Prerequisite: IME 314, MATH 244 and ME 302.

Selection and development of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 1 laboratory.

BMED 482. Senior Project Design Laboratory II. 1 unit
Term Typically Offered: TBD
Prerequisite: BMED 481.

Continuation of BMED 481. Continuation of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 1 laboratory.

BMED 483. Senior Project Design Laboratory III. 2 units
Term Typically Offered: TBD
Prerequisite: BMED 482.

Continuation of BMED 482. Continuation of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories.

BMED 495. Cooperative Education Experience. 1-12 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Sophomore standing and consent of instructor.

Work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A fully developed formal report and evaluation by work supervisor is required. Credit/No Credit grading only. No major credit allowed; total credit limited to 24 units.

BMED 500. Individual Study. 2-4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing and consent of department chair.

Individual investigation, research, studies or surveys of selected problems. Advanced study planned and completed under the direction of faculty. Open to graduate students who have demonstrated the ability to do independent work. Total credit limited to 8 units.

BMED 510. Principles of Tissue Engineering. 4 units
Term Typically Offered: F
Prerequisite: An upper division course in physiology.

Exploration of areas including cell source and isolation, scaffold selection and modification, tissue cultivation and bioreactor design, and patient implantation. Applications of tissue engineering for creating skin, cartilage, blood vessels, and other tissues. 3 lectures, 1 laboratory.

BMED 512. Biomedical Engineering Horizons. 4 units
Term Typically Offered: SP
Prerequisite: Graduate standing, MATH 143, CHEM 125, PHYS 131 or PHYS 141, BIO 161 or consent of instructor.

Examination of the advances in nanotechnology, micro-electro-mechanical systems, materials and clinical technology. Relationship between modern medical achievements and advances in engineering and science, the biomedical engineering industry, and the use of technology in a human context. 4 lectures.
BMED 515. Introduction to Biomedical Imaging. 4 units
Term Typically Offered: W
Prerequisite: PHYS 132, MATH 244, and graduate standing.
Fundamental principles and applications of biomedical imaging, modalities in medicine. Topics focus on optical imaging techniques, such as brightfield, fluorescence, confocal, multiphoton, DIC, OCT, SEM, and other advanced microscopy techniques. 2 lectures, 2 laboratories.

BMED 520. Introduction to Biomedical Engineering. 4 units
Term Typically Offered: W
Prerequisite: Graduate standing.
Advanced treatment of the basic engineering sciences in the biomedical engineering context. For the student who has had little prior exposure to biomedical engineering, but has either a strong engineering or a strong science background. 4 lectures.

BMED 525. Skeletal Tissue Mechanics. 4 units
Term Typically Offered: W
Prerequisite: CE 204, BMED 460.
Overview of the mechanical properties of various tissues in the musculoskeletal system, the relationship of these properties to anatomic and histologic structures, and the changes in these properties caused by aging, disease, overuse, and disuse. Tissues covered include bone, cartilage and synovial fluid, ligament, and tendon. 4 lectures.

BMED 530. Biomaterials. 4 units
Term Typically Offered: F, W
Prerequisite: BIO 161, or BIO 213 and BMED/BRAE 213; MATE 210 and graduate standing or consent of instructor.
Structure-function relationships for materials in contact with biological systems. Interactions of materials implanted in the body. Histological and hematological considerations including foreign body responses, inflammation, carcinogenicity, thrombosis, hemolysis, immunogenic and toxic properties. Microbial interaction with material surfaces, degradation. 4 lectures. Crosslisted as BMED/MATE 530.

BMED 535. Bioseparations. 4 units
Term Typically Offered: W
Prerequisite: BMED 425, ME 341 or consent of instructor.
Advanced topics in physicochemical hydrodynamics, bioseparations and microfluidic bioseparations, which include the key aspects of electrokinetics, colloid science and suspension mechanics in bioseparations. Understanding key separation design parameters through theoretical and numerical models. 4 lectures.

BMED 541. Microcirculation. 3 units
Term Typically Offered: TBD
Prerequisite: BMED 460.
Topic groups include microvessel wall structure, network architecture, flow regulation, transport, inflammation, angiogenesis, arteriogenesis, and rarefaction. Additional focus on patho-physiology and the engineering approaches to assess and treat microvascular dysfunction. Not open to students with credit in BMED 540. 3 lectures.

BMED 542. Microcirculation Laboratory. 1 unit
Term Typically Offered: TBD
Prerequisite: BMED 460.
Laboratory procedures include direct visualization of microvessels by microscopy and indirect assessment by skin temperature, evaluation of microvascular networks by casting and immunostaining, and assessment of vascular wall structure by histology. 1 laboratory.

BMED 545. Neural Systems Simulation and Modeling. 4 units
Term Typically Offered: SP
Prerequisite: MATH 244, BMED 440.
The biophysical basis of the Hodgkin-Huxley active membrane model. A detailed description of the dynamics of voltage gated ion channels. The complete Hodgkin-Huxley active membrane model, with an emphasis on its use in simulating the electrical activity of nerve cells. Equivalent circuit/ circuit simulator based approaches to modeling Hodgkin-Huxley neurons. 4 lectures.

BMED 550. Current and Evolving Topics in Biomedical Engineering. 4 units
Term Typically Offered: SP
Prerequisite: Graduate standing in biomedical engineering or consent of department chair.
Current topics in biomedical engineering, including medical and industrial applications. Exploration of detailed technical treatment of contemporary issues in biomedical engineering, and examination of technical and societal implications of these subjects. The Schedule of Classes will list topics selected. Total credit limited to 8 units. 4 lectures.

BMED 555. Neural Systems Simulation and Modeling. 4 units
Term Typically Offered: SP
Prerequisite: MATH 244, BMED 440.
The biophysical basis of the Hodgkin-Huxley active membrane model. A detailed description of the dynamics of voltage gated ion channels. The complete Hodgkin-Huxley active membrane model, with an emphasis on its use in simulating the electrical activity of nerve cells. Equivalent circuit/ circuit simulator based approaches to modeling Hodgkin-Huxley neurons. 4 lectures.

BMED 556. Cell Transplantation and Biotherapeutics. 2 units
Term Typically Offered: SP
Prerequisite: ASCI 438, BIO 361, or BMED 460.
Topics include the etiology, patho-physiology, and rodent models for various forms of disease, such as inflammatory, autoimmune, and monogenic diseases, as well as nucleic acid, protein, and cellular-based therapies for these conditions. Not open to students with credit in BMED 545. 2 lectures.

BMED 560. Cell Transplantation and Biotherapeutics Laboratory. 2 units
Term Typically Offered: SP
Prerequisite: ASCI 438, BIO 361, or BMED 460; and STAT 218 or STAT 545. Corequisite: BMED 560.
Procedures include rodent handling, anesthesia, surgically modeling disease, biotherapy delivery, and visualizing/measuring therapeutic efficacy. Additional focus on experimental design, data collection, and analysis. 2 laboratories.

BMED 563. Biomedical Engineering Graduate Seminar. 2 units
Term Typically Offered: SP
Prerequisite: Graduate standing or consent of instructor.
Selected topics of interest to biomedical engineering and other graduate students. Open to graduate students and selected seniors. A forum to share information about research and research tools; an opportunity to discuss topics of interest with professionals in the field, academics, and other graduate students. The Schedule of Classes will list topic selected. Total credit limited to 4 units. 1 seminar, 1 laboratory.
BMED 570. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Graduate standing or consent of instructor.

Directed group study of selected topics for graduate students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1-4 lectures.

BMED 571. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Graduate standing or consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1-4 laboratories.

BMED 591. Thesis Project Design Laboratory I. 2 units
Term Typically Offered: TBD
Prerequisite: Graduate standing.

Selection and completion of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research and may involve students from several disciplines. Formulation of outline, literature review and project schedule. 2 laboratories.

BMED 592. Thesis Project Design Laboratory II. 2 units
Term Typically Offered: TBD
Prerequisite: BMED 591 or consent of instructor.

Continuation of BMED 591. Completion of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research. Formulation of outline, literature review, and project schedule. 2 laboratories.

BMED 593. Regenerative Medicine Internship. 3-5 units
Term Typically Offered: TBD
Prerequisite: Graduate standing in the Specialization in Regenerative Medicine for the MS in Biological Sciences, or the MS in Biomedical Engineering, or the Animal Science Specialization in the MS in Agriculture.

Supervised graduate research and/or development in stem cell science or regenerative medicine and engineering. Provides students with an off-campus industrial or university internship. Total credit limited to 10 units. Crosslisted as ASCI/BIO/BMED 593.

BMED 594. Applications in Regenerative Medicine. 2 units
Term Typically Offered: TBD
Prerequisite: Graduate standing in the Specialization in Regenerative Medicine for the MS in Biological Sciences, or the MS in Biomedical Engineering, or the Animal Science Specialization in the MS in Agriculture.

Transfer of skills and knowledge gained through coursework, in an applied setting at Cal Poly. Demonstration of technical, problem solving, and presentation skills, and familiarity with current research. Part of the culminating experience for the Specialization in Regenerative Medicine in the MS in Biological Sciences, or the MS in Biomedical Engineering, or the Animal Science Specialization in the MS in Agriculture. 1 seminar and supervised work. Crosslisted as ASCI/BIO/BMED 594.

BMED 599. Design Project (Thesis). 1-9 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing.

Selection by individual or group, with faculty guidance and approval, of topic for independent research or investigation resulting in a thesis or project to be used to satisfy the degree requirement. An appropriate experimental or analytical thesis or project may be accepted. Total credit limited to 9 units.