The department provides a solid grounding in fundamental physics through theoretical courses in Classical and Modern Physics, Quantum Mechanics, Electromagnetism, and Thermal Physics. These are supported by a comprehensive laboratory program in electronics and quantum physics. Required subjects are complemented by a wide range of elective courses including optics, particle and solid state physics, nonlinear dynamics, astronomy, and geophysics. Facilities include specialized laboratories in electrical measurements, optics, solid state physics, and nuclear and atomic physics. Majors are prepared to attend graduate school, work in technical fields, or pursue a teaching credential. Student activities include a chapter of the national Society of Physics Students and a chapter of the national physics honor society, Sigma Pi Sigma.

Undergraduate Programs

BA Physics
The BA in Physics provides the student with a solid foundation in physics. It is a more flexible major serving students with double majors, nontechnical minors, and students who intend to pursue pre-college teaching. The curriculum has fewer required courses than the BS, which allows students to choose from an extensive list of electives. Tailoring the curriculum to maximize student goals should be done in consultation with an academic advisor. Students considering a career in teaching should consult with their academic advisor early.

BS Physics
The BS in Physics is the appropriate choice for those students planning a career involving physics in industry or government laboratories, as well as those seeking a strong foundation in physics for graduate study.

Astronomy Minor
The Astronomy Minor provides students an opportunity to learn about and analyze astronomical phenomena and processes. A minor in astronomy provides a background for graduate-level studies in astronomy or work in related fields. Interested students should see an Astronomy Minor advisor.

Geology Minor
The Geology Minor is offered in conjunction with the Natural Resources Management and Environmental Sciences Department.
ASTR 301. Planetary Systems. 3 units
Term Typically Offered: W
Prerequisite: PHYS 132 or PHYS 122 and MATH 141 or MATH 161.
Quantitative and descriptive properties of planetary systems, including our solar system. Physics of planets and their formation, moons, comets, and interplanetary media. Extrasolar planets and astrobiology. 3 lectures.

ASTR 302. Stars and Galaxies. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 122 or PHYS 132; and MATH 141 or MATH 161.
Quantitative and descriptive properties of stars, galaxies and interstellar material; including stellar structure and evolution, and structure and evolution of galaxies. 3 lectures.

ASTR 324. Longitude, Navigation, and Timekeeping. 4 units
GE Area F
Term Typically Offered: W
Prerequisite: Junior standing and completion of GE Area B, MATH 119 or equivalent.
The state of navigation prior to 1800 and the world wide problem of determining longitude at sea. Emphasis on historical and modern-day scientific solutions to the longitude problem and navigation technology, time and timekeeping, celestial navigation, and awareness of technological solutions to societal problems. 4 lectures. Fulfills GE Area F.

ASTR 326. Cosmology. 3 units
Term Typically Offered: F
Prerequisite: PHYS 211 (may be taken concurrently).
Introduction to the basic ideas of modern observational cosmology from the Big Bang to the ultimate fate of the universe. Topics include: special and general relativity, curvature of space, dark matter, dark energy, cosmic microwave background, type Ia supernovae. 3 lectures.

ASTR 400. Special Problems for Advanced Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

ASTR 404. Research Experience for Advanced Undergraduates. 1-2 units CR/NC
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigations, research, studies, or surveys of selected problems. Credit/No Credit grading only. Total credit limited to 4 units, with a maximum of 2 units per quarter.

ASTR 444. Observational Astronomy. 4 units
Term Typically Offered: F
Prerequisite: ASTR 302.
Introduction to observational astronomy. Coordinate systems, telescopes and observational instruments (CCDs, filters, spectrographs), observational methods and techniques, data reduction and analysis. Laboratory activities include use of a telescope, CCD camera for data acquisition, data reduction and analysis, and presentation of results. 3 lectures, 1 laboratory.

ASTR 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.
Directed group study of selected topics for advanced students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

ASTR 471. Selected Advanced Laboratory. 1-2 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.
Directed group laboratory study of selected topics for advanced students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 2 laboratories.

GEOL Courses

GEOL 102. Introduction to Geology. 4 units
GE Area B3
Term Typically Offered: F, W, SP
Processes responsible for the Earth's minerals, rocks, and structure surface features. Volcanism; mountain building; plate tectonics; weathering. Erosion and deposition by streams, glaciers, wind and waves. Geological resources, earth hazards, and interaction of man with global processes. 3 lectures, 1 discussion. Fulfills GE B3.

GEOL 200. Special Problems for Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

GEOL 201. Physical Geology. 3 units
Term Typically Offered: F, W, SP, SU
Prerequisite: MATH 119.
Processes responsible for the Earth's rocks, structural surface features, geologic hazards, and natural resources, with emphasis on interactions with human activities. 3 lectures.

GEOL 203. Fossils and the History of Life. 4 units
GE Area B5
Term Typically Offered: W

GEOL 205. Earthquakes. 4 units
GE Area B3
Term Typically Offered: F, SP
GEOL 206. Geologic Excursions. 1 unit
CR/NC
Term Typically Offered: F, SP
Field trips to places of geologic interest. The Schedule of Classes will indicate destinations. Students must provide their own transportation, food, and camping equipment. May be repeated for a maximum of 3 units provided field trips are taken to different locations. Credit/No Credit grading only. 1 laboratory.

GEOL 241. Physical Geology Laboratory. 1 unit
Term Typically Offered: F, SP
Corequisite: GEOL 102 or GEOL 201.
Properties and identification of minerals and rocks. Topographic maps and landform analysis. Geologic maps and interpretation of rock structure. 1 laboratory.

GEOL 270. Selected Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.
Directed group study of selected topics. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

GEOL 305. Fundamentals of Seismology. 4 units
GE Area B6
Term Typically Offered: W
Prerequisite: PHYS 141; and GEOL 201 or PHYS 132.

GEOL 310. Igneous and Metamorphic Petrology. 4 units
Term Typically Offered: W
Prerequisite: GEOL 102 or GEOL 201, and ERSC 223.
Processes associated with melting, igneous crystallization, and metamorphism of igneous and sedimentary rocks. Special attention to relationships with tectonic setting. Required field trip. 3 lectures, 1 laboratory.

GEOL 330. Principles of Stratigraphy. 4 units
Term Typically Offered: SP
Prerequisite: GEOL 102 or GEOL 201, and GEOL 241.
Description and analysis of stratified rock and sediment. Sedimentology, diagenesis, transgressive/regressive sequences, bedform interpretation, marine and terrestrial sediment and sedimentary-rock sequence interpretation, and sequence stratigraphy. Required field trips. 3 lectures, 1 laboratory.

GEOL 400. Special Problems for Advanced Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigations, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

GEOL 401. Field-Geology Methods. 4 units
Term Typically Offered: W
Prerequisite: GEOL 102 or GEOL 201, GEOL 241, GEOL 415, ERSC 223, ERSC 323.
Collecting and interpreting field-geologic data. Description of sedimentary rocks and construction of stratigraphic columns. Mapping geologic structures in the field. Surficial geologic stratigraphy and surficial geologic mapping. Understanding geologic processes through field study. Communicating results of field study. 1 lecture, 3 activities. Crosslisted as ERSC/GEOL 401.

GEOL 402. Geologic Mapping. 4 units
Term Typically Offered: SP
Prerequisite: ERSC/GEOL 401.
Bedrock geologic mapping on topographic maps and aerial photos. Surficial geologic mapping on topographic maps and aerial photos. Correlating and defining surficial geologic map units on the basis of soil development. Understanding landscape evolution using soil development. 4 activities. Crosslisted as ERSC/GEOL 402.

GEOL 404. Research Experience for Advanced Undergraduates. 1-2 units
CR/NC
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigations, research, studies, or surveys of selected problems. Credit/No Credit grading only. Total credit limited to 4 units, with a maximum of 2 units per quarter.

GEOL 415. Structural Geology. 4 units
Term Typically Offered: F
Prerequisite: GEOL 241 and ERSC 223.
Recognition, interpretation, and depiction of geological structures. Understanding rock deformation through the study of faults and folds. 3 lectures, 1 laboratory. Required weekend field trips.

GEOL 420. Applied Geophysics. 3 units
Term Typically Offered: F
Prerequisite: GEOL 201 and PHYS 141.
Introduction to geophysical exploration of the shallow subsurface: seismic refraction, seismic reflection, electrical resistivity, magnetic and gravity methods. Application to determination of subsurface structure, groundwater and mineral resources. Field trip required. 2 lectures, 1 laboratory.

GEOL 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

GEOL 471. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 laboratories.
PHYS Courses

PHYS 104. Introductory Physics. 4 units
GE Area B3
Term Typically Offered: F
Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 96 (formerly MATH 104).

Elementary introduction to mechanics, gases, liquids and solids, heat, vibrations and waves, light, electricity and magnetism. Intended to provide non-science students with an understanding of basic physical concepts. Not open to students who have credit in a college physics course. 4 lectures. Fulfills GE B3.

PHYS 107. Introduction to Meteorology. 4 units
GE Area B3
Term Typically Offered: TBD
Prerequisite: Passing score on ELM examination, or an ELM exemption, or credit in MATH 96 (formerly MATH 104).

Physics of Earth's atmosphere. Topics include the physical basis for temperature, wind generation, atmospheric circulation, humidity, adiabatic processes, cloud formation, cyclone development, precipitation, and storm growth. Other topics include the variety of storms and their effects, satellite imaging, and air pollution and its possible effect on global temperature change. 4 lectures. Fulfills GE B3.

PHYS 111. Contemporary Physics for Nonscientists. 4 units
GE Area B3
Term Typically Offered: W
Prerequisite: MATH 118 and high school trigonometry, or MATH 119.

Exploration of the key concepts of quantum mechanics and Einstein's special and general theories of relativity. Particle-wave duality, Heisenberg's uncertainty principle, Schrodinger's cat, warped spacetime, black holes. 4 lectures. Fulfills GE B3.

PHYS 121. College Physics I. 4 units
GE Area B3
Term Typically Offered: F,W,SP,SU
Prerequisite: PHYS 125 (formerly MATH 104).

Continuation of PHYS 121. Topics include properties of materials, fluids, waves and vibrations, sound, heat, light and optics. Not open for credit to students having a grade of C- or better in PHYS 131 or PHYS 141. 4 lectures. Fulfills GE B3.

PHYS 122. College Physics II. 4 units
GE Area B3; GE Area B4
Term Typically Offered: F,W,SP,SU
Prerequisite: PHYS 118, PHYS 121, PHYS 131, or PHYS 141.

Continuation of PHYS 121. Topics include properties of materials, fluids, waves and vibrations, sound, heat, light and optics. Not open for credit to students having a grade of C- or better in PHYS 132. 4 lectures. Fulfills GE B3 & B4.

PHYS 123. College Physics III. 4 units
Term Typically Offered: F, W, SP
Prerequisite: PHYS 118, PHYS 121, PHYS 131, or PHYS 141.

Continuation of PHYS 121 and 122. Electrostatics, electric current, magnetic fields and induction. Elements of modern physics. Not open for credit to students having a grade of C- or better in PHYS 133. 3 lectures, 1 laboratory.

PHYS 125. College Physics I Laboratory. 1 unit
Term Typically Offered: F, W, SP
Prerequisite: Consent of the College of Science and Mathematics Advising Center. Co-requisite: PHYS 121.

Laboratory experiments to complement introductory course in mechanics, emphasizing experiments on motion, force, and energy. Not open to students with a grade of C- or better in PHYS 131 or PHYS 141. 1 laboratory.

PHYS 131. General Physics I. 4 units
GE Area B3; GE Area B4
Term Typically Offered: TBD
Prerequisite: MATH 141 with grade C- or better and MATH 142 (or concurrent enrollment); for ME and AERO students only. Recommended: High School Physics.

Fundamental principles of mechanics. Vectors, particle kinematics. Equilibrium of a rigid body. Work and energy, linear momentum, rotational kinematics and dynamics. Primarily for engineering students, and for students majoring in the physical sciences. Not open to students with credit in PHYS 141. 3 lectures, 1 laboratory. Crosslisted as HNRS/PHYS 131. Fulfills GE B3 & B4.

PHYS 132. General Physics II. 4 units
GE Area B3; GE Area B4
Term Typically Offered: F,W,SP,SU
Prerequisite: PHYS 131 or HNRS 131 or PHYS 141.

PHYS 133. General Physics III. 4 units
GE Area B3; GE Area B4
Term Typically Offered: F,W,SP,SU
Prerequisite: PHYS 131 or HNRS 131 or PHYS 141, and MATH 142. Recommended: MATH 241.

Charge and matter, electric field, electric potential, dielectrics, capacitance, current and resistance, electromotive force and circuits, magnetic fields, magnetic field of a moving charge, induced emf. 3 lectures, 1 laboratory. Fulfills GE B3 & B4.

PHYS 141. General Physics IA. 4 units
GE Area B3
Term Typically Offered: F,W,SP,SU
Prerequisite: MATH 141 with grade C- or better and MATH 142 or MATH 182 (or concurrent enrollment). Recommended: High School Physics.

PHYS 200. Special Problems for Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.

Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.
PHYS 202. Physics on the Computer. 4 units
Term Typically Offered: SP
Prerequisite: PHYS 133; and MATH 241 or MATH 244.

Introduction to using computers for solving problems in physics: differential equations, matrix manipulations, simulations and numerical techniques, nonlinear dynamics. 4 lectures.

PHYS 206. Experimental Physics. 4 units
Term Typically Offered: W
Prerequisite: PHYS 133 and MATH 143.

L-R-C circuits and electronic circuit elements emphasizing the applications of analog and digital electronics to instrumentation in modern physics. 3 lectures, 1 laboratory.

PHYS 211. Modern Physics I. 4 units
Term Typically Offered: F, W, SP
Prerequisite: PHYS 132 and PHYS 133 and MATH 241. Recommended: MATH 242 or MATH 244.

Special relativity, fundamental principles of quantum mechanics, emphasizing the modern description of atomic phenomena. Wave-particle duality, Bohr theory, Schrödinger equation, elementary atomic structure. 4 lectures.

PHYS 212. Modern Physics II. 4 units
Term Typically Offered: SP
Prerequisite: PHYS 211.

Applications of quantum physics to atoms, molecules, solid state systems, nuclei, and elementary particles including angular momentum and spin. Topics may include applications of statistical mechanics, principles of the laser, cooling and trapping of atoms, Bose-Einstein condensates, semiconductors, superconductors, heavy ion physics, and other topics of current interest. 4 lectures.

PHYS 220. Introduction to Physics Research. 1 unit
CR/NC
Term Typically Offered: W
Prerequisite: PHYS 132 or PHYS 133.

Introduction to the research programs of faculty in the department and opportunities for research. Survey of departmental facilities and procedures related to research. Overview of external research programs/internships. Credit/No Credit grading. 1 lecture.

PHYS 270. Selected Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group study of selected topics. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

PHYS 301. Thermal Physics I. 4 units
Term Typically Offered: W
Prerequisite: PHYS 211.

Thermodynamics and statistical mechanics. Entropy, temperature, ensembles, partition functions, chemical potential, free energy. Selected applications including paramagnetism, ideal gas, Fermi-Dirac and Bose-Einstein distributions. 4 lectures.

PHYS 302. Classical Mechanics I. 4 units
Term Typically Offered: F
Prerequisite: PHYS 131 or PHYS 141; and MATH 241; and MATH 242 or MATH 244.

PHYS 303. Classical Mechanics II. 3 units
Term Typically Offered: W
Prerequisite: PHYS 302.

PHYS 310. Physics of Energy. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 132.

Physics and mathematics applied to broad energy topics. Efficient usage, transportation, solar energy, nuclear fission and fusion. Plasma, hydrogen economy, fuel cells, wind wave, tidal, and geothermal energy. Transmission, storage, fossils. National planning, and energy economics. 3 lectures.

PHYS 313. Introduction to Atmospheric Physics. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 132 or PHYS 122, and MATH 241. Recommended: MATH 304.

Properties of the atmosphere, atmospheric motions, solar and terrestrial radiation. Emphasis on conservation laws of momentum, energy and mass applied to understanding the Earth's atmospheric motions. 3 lectures.

PHYS 315. Introduction to Lasers and Laser Applications. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 211 and MATH 143.

Interaction of radiation with matter, theory of laser action, characteristics and modification of laser output, types of lasers. Holography and other applications. 3 lectures.

PHYS 318. Special Theory of Relativity. 3 units
Term Typically Offered: W
Prerequisite: PHYS 211.

Fundamental experiments and basic postulates of special relativity. Simultaneity, length and time measurements. Lorentz transformations. Four-Vectors. Space-time diagrams. Relativistic mechanics and electromagnetism. 3 lectures. Formerly PHYS 317.

PHYS 322. Vibrations and Waves. 3 units
Term Typically Offered: F
Prerequisite: PHYS 132; and MATH 242 or MATH 244. Recommended: MATH 344.

Introduction to vibrations and waves and their applications. Harmonic oscillator, waves, complex notation, superposition, interference, coherence, Fourier analysis. Applications may include sound, optics, quantum mechanics, and electromagnetic radiation. 3 lectures.
PHYS 323. Optics. 4 units
Term Typically Offered: W
Prerequisite: MATH 241; and PHYS 133; and PHYS 322, EE 228, EE 201, or ME 318.
Geometrical optics, lens systems, aberrations, physical optics and polarization. 3 lectures, 1 laboratory.

PHYS 330. Teaching Physics. 4 units
Term Typically Offered: SP
Prerequisite: one of the following: PHYS 122, PHYS 123, PHYS 132, PHYS 133, PSC 102, or PSC 103.
Inquiry approaches to teaching physics incorporating insights from physics education research and the use of computer technology. Emphasis on pedagogical approaches and assessment that engage learners in scientific discourse and the development of basic models of physics phenomena such as motion, forces, energy, and momentum through experimentation. 2 lectures, 2 activities.

PHYS 340. Quantum Physics Laboratory I. 2 units
Term Typically Offered: F
Prerequisite: PHYS 206; PHYS 212; and one of the following: PHYS 202, CSC 101, CSC 231, or CSC 234.
Experimental studies of the quantum properties of atoms and nuclei. Measurements of fundamental constants. Statistics and data analysis. 1 lecture, 1 laboratory.

PHYS 341. Quantum Physics Laboratory II. 2 units
Term Typically Offered: W
Prerequisite: PHYS 340.
Experimental studies of quantum properties of atoms and nuclei. Interactions of radiation, particles and fields. 2 laboratories.

PHYS 342. Quantum Physics Laboratory III. 1 unit
Term Typically Offered: SP
Prerequisite: PHYS 341.
Advanced experimental studies of quantum properties of atoms and nuclei. Interactions of radiation, particles and fields emphasizing spectroscopic techniques. 1 laboratory.

PHYS 357. Advanced Instrumentation in Experimental Physics. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 206.
Advanced analog and digital electronics, computer interfacing to experiments, robotics. 2 lectures, 1 laboratory.

PHYS 400. Special Problems for Advanced Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigations, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

PHYS 401. Thermal Physics II. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 301.
Additional topics in thermodynamics and statistical physics, including chemical equilibrium, phase transitions, transport processes, and cryogenics. 3 lectures.

PHYS 403. Particle and Nuclear Physics. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 212 and PHYS 405.
Elementary particles and their interactions, fundamental forces, the Standard Model of particle physics. Symmetries and conservation laws including parity, charge conjugation, and time reversal invariance, as well as charge-parity violation. Dirac equation, quantum electrodynamics, and Feynman diagrams. Advanced nuclear physics. Topics may include decays, symmetries of the quark model, neutrinos, nucleosynthesis, and the quark-gluon plasma. 3 lectures.

PHYS 404. Research Experience for Advanced Undergraduates. 1-2 units
Term Typically Offered: F, W, SP
Prerequisite: Consent of department chair.
Individual investigations, research, studies, or surveys of selected problems. Credit/No Credit grading only. Total credit limited to 4 units, with a maximum of 2 units per quarter.

PHYS 405. Quantum Mechanics I. 4 units
Term Typically Offered: SP
Prerequisite: PHYS 212; PHYS 302; PHYS 322; MATH 241; and MATH 242 or MATH 244. Recommended: MATH 344.
Wave nature of matter and the basic postulates of quantum mechanics. The wave function, operators, and their interpretation. Schroedinger's equation and its solutions in one and more dimensions. The hydrogen atom and the periodic table. 4 lectures.

PHYS 406. Quantum Mechanics II. 3 units
Term Typically Offered: F
Prerequisite: PHYS 405.
Angular momentum operators and problems in three dimensions including the hydrogen atom. Elements of matrix mechanics and properties of spin state vectors. Time-independent and time-dependent perturbation theory. Topics may include variational principle, WKB approximation. 3 lectures.

PHYS 408. Electromagnetic Fields and Waves I. 4 units
Term Typically Offered: F
Prerequisite: PHYS 133 and MATH 304.
Electric and magnetic field theory using vector analysis. Electric fields, dielectric materials, magnetic fields, induced emf, magnetic materials, Maxwell's equations, wave equation. 4 lectures.

PHYS 409. Electromagnetic Fields and Waves II. 3 units
Term Typically Offered: W
Prerequisite: PHYS 408. Recommended: PHYS 322.
Wave equation, plane electromagnetic waves, guided waves. Dipole radiation, radiation from an accelerated charge. Special relativity. 3 lectures.
PHYS 410. Physics of Solid Earth. 3 units
Term Typically Offered: W
Prerequisite: PHYS 133, MATH 241 and MATH 244.
Gravity and the figure of the Earth. Body wave seismology, structure and composition of the Earth, heat flow and heat sources, Earth tides, rotational dynamics, the geomagnetic field and its source, paleomagnetism. 3 lectures.

PHYS 412. Solid State Physics. 3 units
GE Area B6
Term Typically Offered: F
Prerequisite: PHYS 211 and MATH 244.
Physics of solids including the structural, mechanical, thermal, and electronic properties, energy band theory and the properties of metals and semiconductors. 3 lectures. Fulfills GE B6 with PHYS 452.

PHYS 413. Advanced Topics in Solid State Physics. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 412.
Semiconducting devices, including junction and field-effect transistors, LED’s, and diode lasers. Magnetic properties of solids. Superconductivity, including discussion of high-temperature superconductors. Other topics of current interest in solid state physics. 3 lectures.

PHYS 417. Nonlinear Dynamical Systems. 4 units
GE Area B6
Term Typically Offered: SP
Prerequisite: PHYS 132 or PHYS 122; and PHYS 133 or PHYS 123; and MATH 241; and MATH 242 or MATH 244. Recommended: Junior standing.
Analysis of linear and nonlinear dynamical systems with emphasis on geometrical methods and visualization techniques. Fixed points, phase plane analysis, bifurcations and limit cycles. Laboratory component includes data acquisition and analysis using computers, numerical simulations of dynamical systems, and analysis of discrete systems. 3 lectures, 1 laboratory. Fulfills GE B6.

PHYS 418. Introduction to General Relativity. 3 units
Term Typically Offered: SP
Prerequisite: PHYS 211; and PHYS 302.
Introduction to Einstein’s theory of gravity: general relativity. Geometric description of special relativity as flat spacetime. Extension to curved spacetimes and description of gravity. Topics include solar system tests of relativity, black holes, gravitational waves, and applications to astronomy and cosmology. 3 lectures.

PHYS 422. Polymer Electronics Laboratory. 1 unit
Term Typically Offered: SP
Prerequisite: EE 347 or MATE 340 or CHEM 319 or PHYS 340.
Experimental procedures in polymer electronics. Investigation of the characteristics of a polymer electronic device. 1 laboratory. Crosslisted as EE/PHYS 422.

PHYS 423. Advanced Optics. 4 units
Term Typically Offered: SP
Prerequisite: PHYS 323.
Advanced topics of modern optics. May include: fiber optics, Fourier optics, quantum optics, lasers, holography, non-linear optics. 3 lectures, 1 laboratory.

PHYS 424. Theoretical Physics. 3 units
Term Typically Offered: SP
Prerequisite: MATH 304, MATH 344, and PHYS 133.
Contour integration in the complex plane, properties of common special functions and delta functions used in physics, partial differential equations, Green’s function techniques for solving differential equations. 3 lectures.

PHYS 452. Solid State Physics Laboratory. 1 unit
GE Area B6
Term Typically Offered: SP
Prerequisite or concurrent: PHYS 412.
Selected experiments on X-ray diffraction, Hall effect, optical absorption, thermo-electric effect, photovoltaic cells, diode characteristics, and superconductivity. 1 laboratory. Fulfills GE B6 with PHYS 412.

PHYS 461. Senior Project I. 2 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Consent of instructor.
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 60 hours total time.

PHYS 462. Senior Project II. 2 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Consent of instructor.
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 60 hours total time.

PHYS 463. Senior Project - Laboratory Research I. 2 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Consent of instructor.
Selection and completion of a laboratory research project under faculty supervision. Projects typical of problems which graduates will encounter in industry or graduate school. Project results are presented in a formal report. Minimum 60 hours total time. 2 laboratories.

PHYS 464. Senior Project - Laboratory Research II. 2 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Consent of instructor.
Selection and completion of a laboratory research project under faculty supervision. Projects typical of problems which graduates will encounter in industry or graduate school. Project results are presented in a formal report. Minimum 60 hours total time. 2 laboratories.
PHYS 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class Schedule will list topic selected. Total credit limited to 8 units. 1 to 4 lectures.

PHYS 471. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. Class Schedule will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories.

PHYS 485. Cooperative Education Experience. 6 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.

Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 12 units; major credit limited to 2 units. Credit/No Credit grading only.

PHYS 495. Cooperative Education Experience. 12 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.

Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Total credit limited to 12 units; major credit limited to 2 units. Credit/No Credit grading only.

PSC Courses

PSC 101. Matter and Energy. 4 units
GE Area B3; GE Area B4
Term Typically Offered: F, W, SP
Introduction to the basic principles of physical science, including observation, description, modeling, and the application of physical phenomena. Emphasis on interactions as described by energy, forces, and fields for mechanical, thermal, electric, and magnetic systems. 3 lectures, 1 laboratory. Fulfills GE B3 & B4.

PSC 102. Atoms and Molecules. 4 units
Term Typically Offered: W
Prerequisite: PHYS 121 or PHYS 131 or PHYS 141 or PSC 101.

Introduction to the basic principles of physical science (observation, description, modeling of physical phenomena) with an emphasis on interactions at the molecular level. Interactions and the behavior of gases, physical change, and chemical change (including chemical reactions, chemical bonding, and solutions). 3 lectures, 1 laboratory.

PSC 103. The Physical Environment: Earth. 4 units
Term Typically Offered: SP
Prerequisite: PSC 101 or PHYS 121 or PHYS 131 or PHYS 141.
Recommended: PSC 102.

Introduction to the basic principles of the earth sciences, and applications of these principles in modern society. Structure and formation of the Earth, earthquakes, weather, and oceanography. 3 lectures, 1 laboratory.

PSC 201. Physical Oceanography. 4 units
GE Area B5
Term Typically Offered: F, W, SP
Introduction to the motions of the ocean. Physical environment and sea floor features; seawater properties; atmosphere and ocean interactions; ocean currents and circulation; waves and tides; El Nino; coastal ocean processes; climate change and ocean stressors; ocean resources and marine life. 4 lectures. Fulfills GE B5.

PSC 307. Nuclear Weapons in the Post-9/11 World. 4 units
GE Area F
Term Typically Offered: SP
Prerequisite: Junior standing and completion of GE Area B.
Technology and basic science of fission/fusion weapons, uranium/plutonium, nuclear reactors, offensive/defensive missile systems, command/control, verification, weapon effects, nuclear testing. Historical context of Cold War and proliferation, recent events, global norms, arms control treaties. 3 lectures, 1 seminar. Fulfills GE Area F.

PSC 320. Energy, Society and the Environment. 4 units
GE Area F
Term Typically Offered: W
Prerequisite: Junior standing and completion of GE Area B.
Science and technology of current and future energy sources along with associated environmental problems and societal response. Energy production, consumption, efficient usage, fossil fuels, nuclear, solar, other renewables. Risks, benefits, planning, economics. 3 lectures, 1 activity. Fulfills GE Area F.

PSC 391. Appropriate Technology for the World's People: Development. 4 units
GE Area D5
Term Typically Offered: F
Prerequisite: Junior standing; completion of GE Area A with a grade of C- or better; and two courses from GE D1-D4.
A broad overview of international development and appropriate design for sustainability. Besides traditional classroom work, students work in teams to address problems with technical solutions. Collaboration with mentors from the university, private sector, and nonprofits serves to provide diverse background and project mentorship. 4 lectures. Crosslisted as HNRS/PSC/UNIV 391. Fulfills GE D5.
PSC 392. Appropriate Technology for the World's People: Design. 4 units
GE Area F
Term Typically Offered: W
Prerequisite: Junior standing and completion of GE Area B, or graduate standing. Recommended: UNIV 391, GE Area D2, and GE Area D3.
Addresses the needs of international impoverished communities with technological solutions, which are inexpensive, ecologically sustainable, and socially appropriate. Group study of target communities, and design and construction of an appropriate technology prototype. Not open to students with credit in PSC/UNIV/HNRS 392. 3 lectures, 1 laboratory. Crosslisted as HNRS/PSC/UNIV 392. Fulfills GE Area F.

PSC 424. Organizing and Teaching Science. 4 units
Term Typically Offered: F
Prerequisite: Admission to the Single Subject Credential Program.
Techniques, aims and objectives in the teaching of physical and life sciences at the secondary level. Selection and organization of teaching material, including strategies for English language learners (ELL) and special needs students. Evaluation of results. 3 lectures, 1 activity. Crosslisted as BIO/PSC 424.

PSC 425. Clinical Experience in Teaching Science Seminar. 2 units
CR/NC
Term Typically Offered: W, SP
Prerequisite: Acceptance into the Single Subject Credential Program in Science. Concurrent: EDUC 469 or EDUC 479.
Principles and practices in effective teaching of science at the middle and high school level, learning theories, curriculum content and structure, classroom issues, and the teaching profession. Credit/No Credit grading only. Total credit limited to 4 units. 2 seminars. Crosslisted as BIO/PSC 425.

PSC 491. Appropriate Technology for the World's People: Development. 4 units
Term Typically Offered: F
Prerequisite: Consent of instructor, and senior or graduate standing. Corequisite: GE Area D5.
A broad overview of international development and appropriate design for sustainability. Besides traditional classroom work, students work in teams to address problems with technical solutions. Collaboration with mentors from the university, private sector, and nonprofits serves to provide diverse background and mentorship. Seminar paper required. Not open to students with credit in PSC/UNIV/HNRS 391. 4 lectures. Crosslisted as PSC/UNIV 491.

PSC 492. Appropriate Technology for the World's People: Design. 4 units
Term Typically Offered: W
Prerequisite: Junior standing and completion of GE Area B, or graduate standing. Recommended: UNIV 391, GE Area D2, and GE Area D3.
Addresses the needs of international impoverished communities with technological solutions, which are inexpensive, ecologically sustainable, and socially appropriate. Group study of target communities, and design and construction of an appropriate technology prototype. Seminar paper required. Not open to students with credit in PSC/UNIV/HNRS 392. 3 lectures, 1 laboratory. Crosslisted as PSC/UNIV 492.