

GENERAL ENGINEERING

Engineering Bldg. (13), Room 263
Phone: 805.756.6339

College of Engineering Advising Center

Engineering South (40), Room 111
Phone: 805.756.1461
gene@calpoly.edu
http://gene.calpoly.edu/

Academic Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering</td>
<td>BS</td>
</tr>
</tbody>
</table>

General Engineering

The mission of the General Engineering Program is to provide students with the highest quality technical and professional engineering education, with a particular emphasis in new or evolving interdisciplinary areas, while allowing the student to participate in designing their curricula.

BS General Engineering

Flexibility, core competency and self-determination are the keywords for students of the General Engineering Program. The mission of the General Engineering Program is to provide students with the highest quality technical and professional engineering education, with a particular emphasis in new or evolving interdisciplinary areas, while allowing the students to participate in designing their curricula. General Engineering graduates have used this program as a foundation for advanced studies and careers in education, project management, technical sales, law, entrepreneurship, medicine and a hundred other paths defined by their keen intellects and adventurous spirits.

The primary goal of the General Engineering Program is to provide students with a theoretically rigorous and a laboratory-centered, practice-oriented, hands-on education that allows graduates to immediately participate and to excel in professional environments. The program is underpinned by a rigorous selection of mathematics, science, basic engineering and liberal-arts courses. There are two paths in the General Engineering program: the General Curriculum in General Engineering, which provides a broad, but rigorous, undergraduate course of study, and the Individualized Course of Study, in which students, with their advisors, select forty technical elective classes that allow the students to put their own mark on their degree, ensuring a unique competency with a solid underpinning.

General Engineering graduates are ready for immediate entry into the professional engineering field. They demonstrate an ability to satisfy their personal needs for further education, as expressed in their matriculation to graduate or professional schools in many cases, and an interest in lifelong learning in all cases. They possess a solid engineering foundation which underpins a successful career. They can become leaders, based on strong communication skills, a capacity to form teams and perform in teams, and an understanding of the economic and social impact of their decisions.

In addition to the abilities expected of all engineering graduates, articulated in the section of this catalog describing the College of Engineering, General Engineering graduates are expected to leave the University with special capabilities pertinent to their own concentrations.

The General Curriculum in General Engineering is designed to provide the broad foundation of engineering competency in preparation for further graduate/professional studies, engineering careers requiring a breadth of knowledge, and non-engineering careers benefiting from a broad technical background. The Individualized Course of Study is designed to allow students the latitude in course selection required to educate themselves either in the classical study of engineering or in new and evolving interdisciplinary technologies. Both the General Curriculum in General Engineering and the Individualized Course of Study are excellent preparation for an applied terminal masters degree in interdisciplinary fields such as the Blended BS+MS program described in the MS Engineering section of this catalog. General Engineering can also accommodate those students who wish to major in engineering but have not presently decided in which specific program their interest is centered. The curriculum builds a sound foundation in the fundamental principles of engineering and engineering systems during the early years of study. During their final quarters of study, students customize their study plan with the help of a faculty advisor and are given the opportunity to focus their education while still at the undergraduate level. The BS degree in General Engineering is, therefore, a direct path to employment in a classic engineering field or in an area of emerging technology. It is also a natural step toward a professional or a graduate degree.

General Engineering students are encouraged to participate in the Blended BS+MS program. This program recognizes that the expertise required of entry level engineers in many fields, particularly new and evolving technological fields, implies that a masters degree is a prerequisite for success. The program allows motivated students to reduce the time necessary to earn both degrees.

All practitioners of engineering must have an understanding of the physical sciences and mathematics. Further, they must have a firm grasp of engineering sciences. The General Engineering curriculum provides the framework for this matrix of understanding, upon which the practitioner may begin to develop a unique area of expertise.

The Individualized Course of Study is available to students who have completed their Sophomore year in any engineering major. This program is for directed, highly motivated students. The technical elective courses are selected to be consistent with a sharply defined career goal. Each student is required to submit a study plan to the coordinator prior to the end of the first quarter of their junior year. Study plans selected in the past have emphasized engineering physics, management of technology, bioengineering, ocean engineering and engineering in unique environments.

General Curriculum in General Engineering or Individualized Course of Study

General Curriculum

The General Engineering Curriculum in General Engineering is designed to meet the needs of students interested in a broad, but rigorous, undergraduate course of study. Students will primarily use this degree as preparation for further graduate/professional studies (e.g. engineering, law, business), engineering careers requiring breadth, and non-engineering careers benefiting from a broad technical background (e.g. education, entrepreneurship, non-profit organizations).
ENGR Courses

ENGR 101. Engineering Student Success. 1 unit
CR/NC
Term Typically Offered: F
Strategies for success as an engineering student, including development of intrinsic motivation, time management, self-advocacy, campus resources, and career preparation. Engineering design process, teamwork, and communication skills. Credit/No Credit grading only. 1 activity.

ENGR 110. Introduction to Engineering. 2 units
Term Typically Offered: F
Introduction to engineering and the computing disciplines with emphasis on the design process, professionalism, communication, teamwork, diversity and skills for academic success in engineering. 2 lectures.

ENGR 234. Introduction to Design Thinking. 4 units
Term Typically Offered: W
Prerequisite: Entrepreneurship minors only.
Introduction to the process of design thinking and human centered design, including design process, methodology, and implementation. Empathy, creativity, iterative prototyping, and contextual design of products and services. 4 lectures.

ENGR 270. Selected Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Open to undergraduate students and consent of instructor.
Directed group study of selected topics. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 lectures.

ENGR 301. Engineering Professional Success. 1 unit
CR/NC
Term Typically Offered: F
Prerequisite: Consent of instructor. Recommended: ENGR 101.
Strategies for success as an engineering professional. Preparation for job searches, including networking and building a professional identity. Exploration of engineering within context of society and community. Intended for First Generation and new transfer students. Credit/No Credit grading only. 1 activity.

ENGR 322. The Learn By Doing Lab Teaching Practicum. 2 units
CR/NC
Term Typically Offered: W, SP
Prerequisite: Completion of GE Area B.
Early teaching experience in an informal science, technology, engineering, and mathematics (STEM) teaching and learning environment. Principles of inquiry-driven STEM education, lesson design, implementation and assessment. Intended for undergraduates exploring STEM teaching as a career. Total credit limited to 4 units. Credit/No Credit grading only. 1 seminar, 1 laboratory. Crosslisted as ENGR 322/SCM 302/HNRS 302.

ENGR 334. Needfinding in New Product Design. 4 units
Term Typically Offered: SP
Prerequisite: BMED 212, ENGR 234, IME 144, or ME 234.
Identification and characterization of human needs for future products, systems, services, and environments. Observation and interview techniques based on ethnographic approaches and building design empathy. Emphasis on development of broad and flexible thinking skills for designers to address the needs of a changing society. Field trips required. 4 lectures.

ENGR 350. The Global Environment. 4 units
GE Area F
Term Typically Offered: F
Prerequisite: Senior standing.
Interdisciplinary investigation of how human activities impact the Earth’s environment on a global scale. Examination of population, resource use, climate change, and biodiversity from scientific/technical and social/economic/historical/political perspectives. Use of remote sensing maps. Sustainable solutions. 4 lectures. Crosslisted as AG/EDES/ENGR/GEOG/ISLA/SCM/UNIV 350. Fulfills GE Area F.

ENGR 400. Special Problems for Advanced Undergraduates. 2-4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: ME 212 or consent of department head.
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units.

ENGR 440. Engineering as a Profession. 3 units
Term Typically Offered: TBD
Prerequisite: Senior standing.
Preparation for the transition from academia to industry. Working knowledge of key topics such as leadership, organizational structure, intellectual property, business models, and product development cycles, along with an appreciation of impact of technology on society. 3 lectures.
ENGR 451. Special Topics in Bioengineering. 4 units
Term Typically Offered: W
Prerequisite: Senior standing.

Current topics in bioengineering, including medical applications and industrial applications. Total credit limited to 16 units, with a maximum of 4 units per quarter. See The Schedule of Classes for topic selected. 4 lectures.

ENGR 459. Interdisciplinary Senior Design Project I. 2 units
Term Typically Offered: F
Prerequisite: Senior standing.

First of three courses taken sequentially in a team based interdisciplinary senior design project. Development of sponsor's needs and generation of design solutions. Project management, cost analysis, intellectual property, test plans, impact analysis on society, and ethical considerations. Communication of results to project sponsor. 2 laboratories.

ENGR 460. Interdisciplinary Senior Design Project II. 2 units
Term Typically Offered: W
Prerequisite: ENGR 459.

Continuation of ENGR 459 and senior project. Activities focus on detail design, analysis and material procurement. 2 laboratories.

ENGR 461. Interdisciplinary Senior Design Project III. 2 units
Term Typically Offered: SP
Prerequisite: ENGR 460.

Continuation of ENGR 460 and completion of senior project. Design verified through prototyping and testing. 2 laboratories.

ENGR 462. Senior Project. 4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: ME 212, junior standing, and consent of instructor.

Selection and completion of project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results presented in a formal report. Minimum commitment of 150 hours.

ENGR 463. Interdisciplinary Entrepreneurial Senior Design Project I. 2 units
Term Typically Offered: F
Prerequisite: Senior standing.

First of three courses taken sequentially in a team based interdisciplinary senior design project with engineering and business students. Entrepreneurial process through design of a product or service, using customer development and agile engineering. 2 laboratories.

ENGR 464. Interdisciplinary Entrepreneurial Senior Design Project II. 2 units
Term Typically Offered: W
Prerequisite: ENGR 463.

Continuation of ENGR 463 and a team based interdisciplinary senior design project with engineering and business students. 2 laboratories.

ENGR 465. Interdisciplinary Entrepreneurial Senior Design Project III. 2 units
Term Typically Offered: SP
Prerequisite: ENGR 464.

Continuation of ENGR 464 and a team based interdisciplinary senior design project with engineering and business students. 2 laboratories.

ENGR 470. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1-4 lectures.

ENGR 471. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1 to 4 laboratories.

ENGR 481. Senior Project Design Laboratory I. 2 units
Term Typically Offered: TBD
Prerequisite: MATH 244, IME 314, ME 302 or consent of instructor.

Selection, development, and completion of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning scheduling and research and may involve students from several disciplines. Formulation of outline, literature review, and project schedule. 2 laboratories.

ENGR 482. Senior Project Design Laboratory II. 2 units
Term Typically Offered: TBD
Prerequisite: ENGR 481.

Selection, development, and completion of project by individuals or team which is typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning scheduling and research and may involve students from several disciplines. Formulation of outline, literature review, and project schedule. 2 laboratories.

ENGR 483. Senior Project Design Laboratory III. 2 units
Term Typically Offered: TBD
Prerequisite: ENGR 482.

Continuation of ENGR 482. Completion of project by individuals or team typical of problems graduates must solve in their fields of employment or applied research. Project may involve, but is not limited to, physical modeling and testing of integrated design projects, costs, planning, scheduling and research, and may involve students from several disciplines. Formulation of outline, literature review, and project schedule. 2 laboratories.
ENGR 493. Cooperative Education Experience. 2 units
CR/NC
Term Typically Offered: TBD
Prerequisite: Sophomore standing and consent of instructor.
Part-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 6 units.

ENGR 494. Cooperative Education Experience. 6 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Sophomore standing and consent of instructor.
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 18 units.

ENGR 495. Cooperative Education Experience. 12 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Sophomore standing and consent of instructor.
Full-time work experience in business, industry, government, and other areas of student career interest. Positions are paid and usually require relocation and registration in course for two consecutive quarters. A more fully developed formal report and evaluation by work supervisor required. Credit/No Credit grading only. No major credit allowed; total credit limited to 24 units.

ENGR 500. Individual Study. 2-4 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing and consent of Program Director.
Advanced study planned and completed under the direction of faculty. Open to graduate students who have demonstrated the ability to do independent work. Total credit limited to 8 units.

ENGR 551. Advanced Topics in Bioengineering. 4 units
Term Typically Offered: TBD
Prerequisite: ENGR 450 or consent of instructor.
Current topic in bioengineering research/application in detail, including medical applications and industrial applications. Takes advantage of capabilities of resident or visiting faculty. Total credit limited to 16 units. See The Schedule of Classes for topic selected. 4 lectures.

ENGR 570. Selected Advanced Topics. 1-4 units
Term Typically Offered: TBD
Prerequisite: Graduate standing or consent of instructor.
Directed group study of selected topics for graduate students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1-4 lectures.

ENGR 571. Selected Advanced Laboratory. 1-4 units
Term Typically Offered: TBD
Prerequisite: Graduate standing or consent of instructor.
Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Schedule of Classes will list title selected. Total credit limited to 8 units. 1-4 laboratories.

ENGR 581. Biochemical Engineering. 4 units
Term Typically Offered: TBD
Prerequisite: CHEM 312 and MCRO 221.
Types of microorganisms and microbially-mediated biochemical reactions for biotechnology applications. Stoichiometric and thermodynamic principles for microbial growth and metabolism. Material and energy balances for aerobic and anaerobic growth and bioreactor design. Kinetics of enzyme catalyzed reactions. Field trips required. 3 seminars, 1 laboratory. Crosslisted as ENGR/ENVE 581.

ENGR 593. Cooperative Education Experience. 2 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing and consent of instructor.
Advanced study analysis and part-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only.

ENGR 594. Cooperative Education Experience. 6 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing and consent of instructor.
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only.

ENGR 595. Cooperative Education Experience. 12 units
CR/NC
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing and consent of instructor.
Advanced study analysis and full-time work experience in student's career field; current innovations, practices, and problems in administration, supervision, and organization of business, industry, and government. Must have demonstrated ability to do independent work and research in career field. Credit/No Credit grading only.

ENGR 599. Industry Sponsored Project Experience. 1-9 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing.
Designed for MS students who are performing a work-for-others research project that requires a Non-disclosure Agreement. Students who qualify will be required file a detailed, supervised report and undergo an examination on the work performed. Total credit limited to 9 units. 1 to 9 supervision.
ENGR 599. Design Project (Thesis). 1-9 units
Term Typically Offered: F,W,SP,SU
Prerequisite: Graduate standing.

Each individual or group will select, with faculty guidance and approval, a topic for independent research or investigation resulting in a thesis or project to be used to satisfy the degree requirement. An appropriate experimental or analytical thesis or project may be accepted.