The objectives of the Agricultural Systems Management program are to produce graduates who, in 3-5 years after graduation, are successful as one of the following:

- Individuals that are successful in technical, business, or management positions within agriculture or related industries
- Adapting to new challenges and opportunities through the application of acquire knowledge in agricultural systems management
- Actively pursuing professional development such as a degree in an advanced degree program, professional license, or technical certification

Agricultural Systems Management graduates demonstrate a knowledge and understanding of basic agricultural technologies and agribusiness principles necessary for technical operations and business management careers in agriculture and related industries; an understanding of modern science and practice within a specialized agricultural area of interest; and ability to apply quantitative, analytical processes for developing solutions to technological, business or management problems associated with production, processing, or the distribution of products and support services in agriculture and related industries; an understanding of the interconnected “systems” of agriculture; and ability to safely and properly handle the materials, machines, sensors, tools and techniques of modern agricultural or technical operations; and an ability to communicate and perform as effective agricultural systems management professionals in the solution of problems crossing discipline or cultural boundaries.

Career opportunities are available in the manufacturing, sales, and service of agricultural equipment and machinery; management and production of animals and crops; processing of food and fiber; and management of water/irrigation facilities. The program is recognized by the American Society of Agricultural and Biological Engineers.

BS BioResource and Agricultural Engineering

The bioresource/agricultural engineer represents the most general type of engineer, adept at utilizing electrical and mechanical energy sources, water resources, and designing structural units. The curriculum features a unique combination of engineering and applied science coursework, with a focus on preparing graduates for practice in professional engineering.

The mission of the BioResource and Agricultural Engineering program is to provide a "learn by doing" undergraduate educational experience that prepares students for engineering practice in support of agriculture and related industries throughout the West.

The objectives of the BioResource and Agricultural Engineering program are to produce graduates who, in 3-5 years after graduation, are successful as one of the following:

- Engineers in positions of professional responsibility and leadership in a modern multi-disciplinary, system-oriented environment that emphasizes problem solving
- Actively pursuing professional development such as a degree in an advanced degree program, professional license, or technical certification
Applying unique engineering problem-solving skills and principles within a career outside traditional engineering environments, such as management, teaching, research, or other professional fields.

BioResource and Agricultural Engineering graduates demonstrate a knowledge and understanding of the basic mathematics, physical and engineering sciences necessary for modern agricultural engineering practice, the ability to design components, systems or processes to meet specified objectives, including prudent use of resources; an understanding of their professional and ethical responsibilities as agricultural engineers, including the societal impact of engineering solutions and the need to engage in life-long learning; the ability to plan, design, execute and evaluate engineering solutions to problems/projects that are real, practical and of a complexity representative of projects encountered in beginning professional practice; and the ability to communicate and perform as effective engineering professionals in both individual and team-based project environments.

Cal Poly's "learn by doing" philosophy is emphasized by the numerous design-centered laboratories and the senior project. In the senior design project, which is completed in a three-quarter set of capstone courses, students demonstrate their understanding of engineering knowledge and their ability to apply that knowledge creatively to practical problems.

Consistent with program accreditation requirements regarding a graduate's ability to function on multidisciplinary teams, the BioResource and Agricultural Engineering program has adopted an explicit graduation requirement in this area. This provides students an opportunity to practice team skills. Such experience is important for practicing engineers given the ever-increasing diversity of engineering science and applications. Methods to fulfill this requirement include items such as:

- Team design project
- CO-OP or internship employment
- Certain club activities
- Working with faculty on a sponsored project
- Project embedded in curriculum
- Taking certain technical electives
- Service learning project

Career opportunities exist in the design, evaluation and management of systems – water resources, irrigation, drainage, groundwater, pumps, soil conservation; agricultural power and machinery; food processing; energy; and agricultural environments. The program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).

Minors

The department participates in offering interdisciplinary minors in Water Science and Geographic Information Systems. Please see College of Agriculture, Food and Environmental Sciences (http://catalog.calpoly.edu/collegesandprograms/collegeofagriculturefoodenvironmentalsciences/) section for more information.

Graduate Program

Cal Poly offers the MS in Agriculture with specializations in BioResource and Agricultural Systems and in Irrigation, and Water Engineering. Please see College of Agriculture, Food and Environmental Sciences (http://catalog.calpoly.edu/collegesandprograms/collegeofagriculturefoodenvironmentalsciences/) section for more information.

BRAE Courses

BRAE 121. Agricultural Mechanics. 2 units
Identification and use of tools and materials; shop safety; tool sharpening and care; concrete mixes and materials; simple electric wiring; metal work; pipe fitting; basic woodworking; estimating quantities and costs. Students are required to meet safety regulations in laboratory work. 1 lecture, 1 laboratory.

BRAE 128. Careers in Bioresource and Agricultural Engineering. 2 units

BRAE 129. Laboratory Skills and Safety. 1 unit
Prerequisite: BRAE and ASM majors only.
Introduction to fabrication and construction materials used in the field of Agricultural Engineering. Fabrication skills in the development of wood, metal, concrete projects, and creative design. Strength tests of wood, fasteners, concrete, and student design projects. 1 laboratory.

BRAE 141. Agricultural Machinery Safety. 3 units
Evaluation of safe tractor and equipment operation. Supervised field operation emphasizing the safe and efficient performance of modern farm and utility-industrial equipment. 2 lectures, 1 laboratory.

BRAE 142. Agricultural Power and Machinery Management. 4 units
Prerequisite: MATH 116 or equivalent.
Evaluation of agricultural machinery and tractor power performance. Equipment studied includes primary and secondary tillage tools, grain drills, row crop planters, sprayers, grain and forage harvesters, and specialty crop harvesters. Emphasis on management, selection, cost analysis using computers and efficient operation of agricultural machinery. 3 lectures, 1 laboratory.

BRAE 150. Design Graphics and CAD for Agricultural Engineering. 2 units
Visual communication in engineering design and problem solving. Principles of freehand sketching, and computer-aided-drafting. Computer aided drafting using CAD software. 2-D projections including automatic dimensioning and hatching. Plan set development and external references. Land grading design, using 3-D drawing software. Not open to students with credit in BRAE 133 and BRAE 151. 2 laboratories.

BRAE 152. 3-D Solids Modeling. 1 unit
Prerequisite: BRAE 133 and BRAE 151; or BRAE 150.
Introduction to 3-dimensional solids modeling using state-of-the-art software. Model generation and modification of associative properties, assembly modeling, extrusions and revolutions. 1 laboratory.

BRAE 200. Special Problems for Undergraduates. 1-4 units
Prerequisite: Consent of department head.
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 8 units, with a maximum of 4 units per quarter.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 203</td>
<td>Agricultural Systems Analysis. 4 units</td>
<td>4</td>
<td>Prerequisite: MATH 118 or equivalent.</td>
</tr>
</tbody>
</table>

Agricultural Systems Analysis investigates the interrelationships between sub-components in an overall system. Problem solving algorithms, network analysis, project planning techniques, and optimization. 2 lectures, 2 activities.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 213</td>
<td>Bioengineering Fundamentals. 2 units</td>
<td>2</td>
<td>Prerequisite: MATH 142, for engineering students only. Corequisite: BIO 213. Recommended: CHEM 124.</td>
</tr>
</tbody>
</table>

Use of tapes, staff compass, abney levels, total stations, and GPS receivers. Keeping field notes, measurements by tape. Closed and open traverse by compass and total stations. Turning angles and determining directions of lines. Map reading and public land description. 1 lecture, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 232</td>
<td>Agricultural Structures Planning. 4 units</td>
<td>4</td>
<td>Prerequisite: BRAE 150 or BRAE 151; and PHYS 131 or PHYS 141.</td>
</tr>
</tbody>
</table>

Planning of facilities required in production systems. Materials and processes used in construction of agricultural structures. Environmental factors affecting crop storage structures and animal housing. Design of structural environments to meet the needs of commodities, animals, and plants. 3 lectures, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 234</td>
<td>Introduction to Mechanical Systems in Agriculture. 4 units</td>
<td>4</td>
<td>Prerequisite: PHYS 131 or PHYS 141.</td>
</tr>
</tbody>
</table>

Introduction to elements used in the mechanical transmission of power and force in agricultural systems. Power transmission using v-belts, roller chain, gear and shaft drives, hydraulic actuators. Linear and nonlinear actuation devices including linkages, cams, and hydraulic/pneumatic cylinders. 3 lectures, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 236</td>
<td>Principles of Irrigation. 4 units</td>
<td>4</td>
<td>Prerequisite: MATH 141.</td>
</tr>
</tbody>
</table>

Land grading design, operation, management, and evaluation of irrigation methods. 3 lectures, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 237</td>
<td>Introduction to Engineering Surveying. 2 units</td>
<td>2</td>
<td>Prerequisite: MATH 119.</td>
</tr>
</tbody>
</table>

Introduction to field measurement using automatic levels, total stations, robotic stations, GNSS RTK receivers and field data collectors. Field procedures for differential and profile leveling, directional measurement, traversing and construction surveying. An understanding in direction, elevation and earthwork volume computations. 1 lecture, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 239</td>
<td>Engineering Surveying. 4 units</td>
<td>4</td>
<td>Prerequisite: MATH 119.</td>
</tr>
</tbody>
</table>

Field measurement using levels, robotic stations, RTK receivers, data collectors. Leveling, profiles, traverses, traverse adjustment, triangulation, earthwork volumes and curve alignment computations. Topographic surveys, topographic mapping, building layout, road design. Topics as geodetic survey, licensing, aerial mapping, GIS, and remote sensing. 2 lectures, 2 laboratories.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 240</td>
<td>Agricultural Engineering Laboratory. 1 unit</td>
<td>1</td>
<td>Prerequisite: Consent of instructor.</td>
</tr>
</tbody>
</table>

Individual projects. Total credit limited to 4 units. 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 244</td>
<td>Precision Farming. 4 units</td>
<td>4</td>
<td>Prerequisite: AEPS 133 or AEPS 190 or AEPS 260 or BRAE 237 or BRAE 239.</td>
</tr>
</tbody>
</table>

Precision agriculture applications. Integrating GIS, GPS, and remote sensing technologies with site-specific farming practices to optimize agricultural productivity. Field trip required. 3 lectures, 1 laboratory. Crosslisted as AEPS/BRAE 244.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 247</td>
<td>Forest Surveying. 2 units</td>
<td>2</td>
<td>Prerequisite: NR 215.</td>
</tr>
</tbody>
</table>

Use and care of tapes, staff compass, abney levels, total stations, and GPS receivers. Keeping field notes, measurements by tape. Closed and open traverse by compass and total stations. Turning angles and determining directions of lines. Map reading and public land description. GPS measurements. Weekend field trips required. 1 lecture, 1 laboratory. Crosslisted as BRAE/NR 247.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 270</td>
<td>Selected Topics. 1-4 units</td>
<td>1-4</td>
<td>Prerequisite: Open to undergraduate students and consent of instructor.</td>
</tr>
</tbody>
</table>

Directed group study of selected topics. The Class Schedule will list topic selected. Total credit limited to 8 units. 1 to 4 lectures.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 301</td>
<td>Hydraulic and Mechanical Power Systems. 4 units</td>
<td>4</td>
<td>Prerequisite: PHYS 121 or PHYS 141.</td>
</tr>
</tbody>
</table>

Selection, application and use of hydraulic components and mechanical power transmission equipment. Use of standardized circuit design procedures. 3 lectures, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 302</td>
<td>Servo Hydraulics. 4 units</td>
<td>4</td>
<td>Prerequisite: BRAE 216 or BRAE 324 and BRAE 234 or BRAE 301.</td>
</tr>
</tbody>
</table>

Application of microcomputers and programmable logic controllers to hydraulic, pneumatic and mechanical systems. Theory, instrumentation and sensors used in process and control systems used in agricultural equipment. 3 lectures, 1 laboratory.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAE 312</td>
<td>Hydraulics. 4 units</td>
<td>4</td>
<td>Prerequisite: PHYS 132, ME 211.</td>
</tr>
</tbody>
</table>

Static and dynamic characteristics of liquids, flow in open and closed channels, uniform and nonuniform flow, flow measurement, pumps. 3 lectures, 1 laboratory.
BRAE 317. Agricultural Systems Management Theory. 4 units
Prerequisite: BRAE 203.
Introduction to systems and technical management with application in agricultural business settings, including logistics, reliability, system behavior, causal loops, feedback and delay. Data analysis, systematic decision-making, and simulation. Field trip required. 4 lectures.

BRAE 320. Principles of Bioresource Engineering. 4 units
Prerequisite: BRAE 232; BRAE 236; CHEM 125; and PHYS 132.
Theory and applications of bioprocess technology in biological and agricultural systems. Engineering properties of biological materials and organisms. Basic unit operations, fluid mechanics and heat/mass transfer as applied to bioprocess technology. Special requirements of agricultural and biological processes. 3 lectures, 1 laboratory.

BRAE 321. Agricultural Safety. 3 units
Prerequisite: Junior standing.
Principles of agricultural safety. Accident causation and prevention, hazard identification and abatement, laws and regulations. Machinery, electrical, chemical, livestock, shop and fire safety. Safety program development. 2 lectures, 1 activity.

BRAE 324. Principles of Agricultural Electrification. 4 units
Prerequisite: MATH 119, PHYS 121.
Applications of DC/AC electricity in agriculture. National Electric Code regulations. The wiring of agricultural structures and electrical distribution. Series, parallel and series-parallel circuits, R-L-C circuits, electric motors, electronics. 3 lectures, 1 laboratory.

BRAE 328. Measurements and Computer Interfacing. 4 units
Prerequisite: EE 321; EE 361; and CSC 231 or CSC 232 or CSC 234.
Transducers and engineering measurements in agricultural engineering. Covering transducer characteristics, signal processors and controllers, instrumentation techniques, and the use of the computer in the measurement and control of typical engineering problems. 3 lectures, 1 laboratory.

BRAE 331. Irrigation Theory. 3 units
Prerequisite: BRAE 236, or BRAE 340.
Plant-water-soil relations using evapo-transpiration, plant stress, soil moisture deficiency, frequency and depth of irrigation, salinity, infiltration, drainage and climate control. 3 lectures.

BRAE 332. Environmental Controls for Agricultural Structures. 4 units
Prerequisite: BRAE 232.
Design of internal environments to meet the needs of commodities, animals, and plants. Thermodynamic and psychrometric principles for agricultural structures. Heat transfer, insulation and refrigeration. Sensing, monitoring and controlling environmental factors affecting crop storage structures and animal housing. 4 lectures.

BRAE 333. Aquacultural Engineering. 3 units
Prerequisite: Junior standing and MATH 118.
Application of aquacultural engineering principles for freshwater and marine food-production systems. Examination of system design constraints for maximizing productivity and minimizing environmental impacts, nutrient management, gas exchange and animal husbandry. Field trip required. 2 lectures, 1 laboratory.

BRAE 337. Landscape Irrigation. 4 units
Prerequisite: MATH 118.
Design of sprinkler and drip irrigation systems including: site characteristics, soil variables affecting water storage and infiltration rate, plant selection and hydrozones, hydraulics, nozzle spacing, selection of system components, back flow prevention, plumbing codes and cost estimating. Irrigation system evaluation and audit irrigation scheduling, and water budget. 3 lectures, 1 laboratory.

BRAE 339. Internship in Bioresource and Agricultural Engineering. 1-12 units
CR/NC
Prerequisite: Consent of internship instructor.
Students will spend up to 12 weeks with an approved agricultural firm engaged in production or related business. Time will be spent applying and developing production and managerial skills and abilities. One unit of credit may be allowed for each full week of completed and reported internship. Degree credit limited to 6 units. Credit/No Credit grading only.

BRAE 340. Irrigation Water Management. 4 units
2020-21 or later: Upper-Div GE Area B
2019-20 catalog: GE Area B7
2017-19 or earlier catalog: GE Area F
Prerequisite: MATH 118; junior standing; completion of GE Area A with grades of C- or better; and completion of GE Areas B1 through B4, with a grade of C- or better in one course in GE Area B4 (GE Area B1 for students on the 2019-20 or earlier catalogs).
Soil-plant-water relationships; evapotranspiration; irrigation schedules; salinity and drainage; irrigation efficiency. Water measurement; soil moisture measurement; irrigation systems and practical constraints affecting scheduling. California water supply and budget; water rights; local, state and federal water institutions; California water issues. 3 lectures, 1 laboratory. Fullfills GE Upper-Division B (GE Area B7 for students on the 2019-20 catalog; GE Area F for students on earlier catalogs).

BRAE 342. Agricultural Materials. 4 units
Prerequisite: PHYS 121; SS 120 or SS 121; and MATH 119.
Physical properties of agricultural materials and their measurement. Strength of materials, material flow and transport, material deformation, shape and size classification, moisture relationships and biological interactions. Interactions between agricultural materials, the environment and equipment used to handle them. 3 lectures, 1 laboratory.
BRAE 343. Mechanical Systems Analysis. 4 units
Prerequisite: BRAE 342.
Use of statics and dynamics to make original calculations, plans, sketches, graphics, drawings, schemes and layouts for the fabrication and construction of machines. 3 lectures, 1 laboratory.

BRAE 344. Fabrication Systems. 4 units
Prerequisite: BRAE 343.
Fabrication systems including cutting, sawing, shearing, bending, welding, grinding, cleaning, painting and proper safety procedures. Experimental projects to include team design and construction, presentation, organization, and evaluation. 2 lectures, 2 laboratories.

BRAE 345. Aerial Photogrammetry and Remote Sensing. 3 units
Prerequisite: MATH 118.
Concepts of photogrammetry and remote sensing. Object recognition, stereoscopic viewing, elevation determination, and scale. State-of-the-art techniques for collecting, processing, and interpreting remote sensing data. Digital image analysis techniques such as image enhancement, change detection, unsupervised and supervised classifications. 2 lectures, 1 laboratory.

BRAE 348. Energy for a Sustainable Society. 4 units
2020-21 or later: Upper-Div GE Area B
2019-20 catalog: GE Area B7
2017-19 or earlier catalog: GE Area F
Prerequisite: Junior standing; completion of GE Area A with grades of C- or better; and completion of GE Areas B1 through B4, with a grade of C- or better in one course in GE Area B4 (GE Area B1 for students on the 2019-20 or earlier catalogs).
Study of how the transition can be made from fossil fuels to renewable energy sources including hydro, biomass, solar, wind, and energy conservation. Environmental, economic, and political consequences of a renewable energy-based sustainable society. 3 lectures, 1 activity. Fulfills GE Upper-Division B (GE Area B7 for students on the 2019-20 catalog; GE Area F for students on earlier catalogs).

BRAE 349. Water for a Sustainable Society. 4 units
2020-21 or later: Upper-Div GE Area D
2019-20 or earlier catalog: GE Area D5
Prerequisite: Junior standing; completion of GE Area A with grades of C- or better; one course in GE Area B4 with a grade of C- or better (GE Area B1 for students on the 2019-20 or earlier catalogs); and two lower-division courses in GE Area D.
Historical, political, economic, socio-technical, and cultural dimensions of water sustainability. Overview of complex systems with an emphasis on individual choices and their impact on water sustainability. Exploration of core sustainability concepts; practices, barriers and goals related to water resources. Course offered online only. 4 lectures. Crosslisted BRAE/NR 349. Fulfills GE Upper-Division D (GE Area D5 for students on the 2019-20 or earlier catalogs).

BRAE 355. Drone Assisted Surveying. 4 units
Prerequisite: BRAE 239; GEOG 328 or BRAE 345; NR 218 or GEOG 318; and STAT 217 or STAT 218.

BRAE 400. Special Problems. 1-4 units
Prerequisite: Consent of department head.
Individual investigation, research, studies, or surveys of selected problems in agriculture. Total credit limited to 8 units, with a maximum of 4 units per quarter.

BRAE 403. Agricultural Systems Engineering. 4 units
Prerequisite: MATH 242 or MATH 244. Corequisite: STAT 312.
Engineering and economic principles combined with mathematical optimization techniques to evaluate parameters in agricultural production and processing systems. Project planning techniques, linear and nonlinear modeling, response surface methodology. Professional responsibilities in Agricultural Engineering including ethics, patents, copyrights, liability. 3 lectures, 1 laboratory.

BRAE 405. Chemigation. 1 unit
Prerequisite: BRAE 236 or BRAE 340; or graduate standing.
Fertilizer and chemical injection through irrigation systems. Hardware, fertilizer compounds, and distribution uniformity. Matching chemicals and equipment to specific irrigation methods. Safety. 1 laboratory.

BRAE 414. Irrigation Engineering. 4 units
Prerequisite: BRAE 331 or BRAE 340; BRAE 312 with a grade of C or better; or graduate standing.
Design of on-farm irrigation systems; micro, surface, and sprinkler irrigation systems; canals and pumps; economic and strategies of pipe design; pipeline protection. 3 lectures, 1 laboratory.

BRAE 418. Agricultural Systems Management I. 4 units
Prerequisite: BRAE 203; AGB 310; and completion of GE Area A3 with a grade of C- or better; or graduate standing.
Project management of agricultural systems. Emphasis placed on a team approach to problem solution. Case studies and student projects used to explore the following topics: project leadership, project organization, communication, needs assessment, feasibility studies, cost analysis, decision making, solution implementation, and evaluation. 3 lectures, 1 laboratory.

BRAE 419. Agricultural Systems Management II. 4 units
Prerequisite: BRAE 418.
Project management of agricultural systems. Emphasis placed on a team approach to problem solution. Case studies and student projects used to explore the following topics: project leadership, project organization, communication, needs assessment, feasibility studies, cost analysis, decision making, solution implementation, and evaluation. 2 lectures, 2 laboratories.
BRAE 421. Equipment Engineering. 3 units
Prerequisite: BRAE 152, CE 204, and ME 212.
Design and construction of specialized agricultural components and equipment. 2 lectures, 1 laboratory.

BRAE 422. Equipment Engineering. 4 units
Prerequisite: BRAE 421.
Design and construction of specialized agricultural components and equipment. 2 lectures, 2 laboratories.

BRAE 425. Computer Controls for Agriculture. 3 units
Prerequisite: BRAE 324.
Computer activated controls as applied to agricultural machinery, agricultural structures, processing and irrigation industries. Encompassing control logic to evaluate stability behavior of systems of computer interfacing, data input and control output. 2 lectures, 1 laboratory.

BRAE 428. Agricultural Robotics and Automation. 4 units
Prerequisite: BRAE 328.
Agricultural applications of signal processing, control theories, machine vision and robot basics for agricultural production and processing. Approaches and constraints related to agricultural automation and the use of robotics in field applications. Engineering approach to problemsolving and experimental data analysis. Field trip required. 3 lectures, 1 laboratory.

BRAE 432. Agricultural Buildings. 4 units
Prerequisite: PHYS 121, BRAE 342, BRAE 343.
Selection of buildings, storage units, and related equipment for production agriculture. Economics and functionality of various designs and construction materials. Environmental factors affecting crop storage and animal housing. 3 lectures, 1 laboratory.

BRAE 433. Agricultural Structures Design. 4 units
Prerequisite: BRAE 232, CE 204.
Structural analysis and design of agricultural service and processing buildings. Emphasis on use of wood, metals, and reinforced concrete in light construction. 3 lectures, 1 laboratory.

BRAE 434. Automotive Engineering for a Sustainable Future. 4 units
Prerequisite: Junior standing in any engineering or physical science major.
Multidisciplinary investigation of automotive renewable fuels and electric/hybrid vehicles. Analyze and design related technologies and systems. Methods for complete-cycle energy and GHG analysis. Comparative emissions, efficiency, power output, and infrastructure requirements. Laboratory projects converting engines and vehicles to operate on alternative fuels or electric propulsion. 3 lectures, 1 laboratory. Crosslisted as BRAE/EE 434.

BRAE 435. Drainage. 4 units
Prerequisite: BRAE 312 or BRAE 340; or graduate standing.
Relevant principles of hydrology and porous media flow. Flow nets, wells and ground water, design of simple surface and sub-surface drains. 3 lectures, 1 laboratory.

BRAE 436. Food and Agriculture Process Water Engineering. 4 units
Prerequisite: one of the following: BIO 111, BIO 161, BOT 121, BRAE 213, or MCRO 221; and CHEM 125 or CHEM 128.
Theory and design of facilities for physical and chemical treatment of water used in agricultural practices to sanitize crops as they are harvested, and water used while processing the commodities. This course also includes the design of chemical and biological reactors. 3 lectures, 1 activity.

BRAE 438. Drip/Micro Irrigation. 4 units
Prerequisite: BRAE 236 or BRAE 340; or graduate standing.
Drip/micro irrigation hardware and management. Emphasizes agricultural drip/micro irrigation with some landscape application. Filtration, emitters, chemical injection, agronomic constraints, and scheduling. Field trip(s) included. 3 lectures, 1 laboratory.

BRAE 440. Agricultural Irrigation Systems. 4 units
Prerequisite: BRAE 340 or graduate standing.
On-farm irrigation system evaluation and management. Drip, micro-spray, furrow, border strip, sprinkler systems. Irrigation efficiency and uniformity. Pumping costs. For non-BRAE majors only. 3 lectures, 1 laboratory.

BRAE 447. Advanced Surveying with GIS Applications. 4 units
Prerequisite: BRAE 239.
Field skills in precise mapping, high order control and terrestrial imagery. CAD mapping and design. Work with large datasets on regional surface models. Collect, manipulate data for GIS. Basics of boundary law and limitations of using land boundaries in GIS. 2 lectures, 2 laboratories.

BRAE 448. Bioconversion. 4 units
Prerequisite: MATH 118 or equivalent.
Biological, thermal and physical techniques for converting biomass into useful energy forms for agriculture and industry. Laboratory exercises include experiments with anaerobic digestion of animal wastes into methane, ethanol fermentation of grains and composting of agricultural residues. Technical and economic feasibility of biofuels. 3 lectures, 1 laboratory.

BRAE 450. Solar Photovoltaic System Engineering. 4 units
Prerequisite: one of the following: PHYS 104; PHYS 118; PHYS 121; or PHYS 141; and junior standing.
Engineering principles, design, and installation of solar photovoltaic power systems including grid-tie and off-grid systems. Photonic energy conversion, solar module engineering, solar power electronics, photovoltaic site planning, mechanical and structural considerations, permit processes, government incentives, and analysis of financial and investment issues. Field trips required. 3 lectures, 1 laboratory. Crosslisted as BRAE/EE/HNRS 450.

BRAE 460. Senior Project Organization. 1 unit
Prerequisite: Completion of GE Area A3 with a grade of C- or better.
Selection and organization of senior project. Involves time management, research techniques, budgeting and project presentation. Documentation of multidisciplinary team experience. 1 lecture.
BRAE 461. Senior Project I. 2 units
Prerequisite: BRAE 460.

Solution of an engineering or systems management problem in agriculture. May involve research methodology, problem statement, analysis, synthesis, project design, construction, and evaluation. Project requires 150 hours with a minimum of faculty supervision.

BRAE 462. Senior Project II. 2 units
Prerequisite: BRAE 461.

Solution of an engineering or systems management problem in agriculture. May involve research methodology, problem statement, analysis, synthesis, project design, construction, and evaluation. Project requires 150 hours with a minimum of faculty supervision.

BRAE 470. Selected Advanced Topics. 1-4 units
Prerequisite: Consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class Schedule will list topic selected. Total credit limited to 8 units. 1-4 lectures.

BRAE 471. Selected Advanced Laboratory. 1-4 units
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Class Schedule will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories.

BRAE 481. Advanced Agricultural Mechanics. 2 units
Prerequisite: Agricultural teacher candidates starting/returning from student teaching, senior or graduate standing or consent of instructor.

Advanced shop skills. Carpentry, electricity, plumbing, surveying, power mechanics, tractor equipment operation and maintenance. 1 lecture, 1 laboratory.

BRAE 485. Cooperative Education Experience in BioResource and Agricultural Engineering. 6 units
CR/NC
Prerequisite: Sophomore standing and consent of instructor.

Part-time work experience with an approved BioResource and Agricultural Engineering firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Major credit limited to 4 units; total credit limited to 12 units. Credit/No Credit grading only.

BRAE 495. Cooperative Education Experience in BioResource and Agricultural Engineering. 12 units
CR/NC
Prerequisite: Sophomore standing and consent of instructor.

Full time work experience with an approved BioResource and Agricultural Engineering firm engaged in production or related business, industry or governmental agency. Positions are paid and usually require relocation and registration in course for two consecutive quarters. Formal report and evaluation by work supervisor required. Major credit limited to 4 units; total credit limited to 12 units. Credit/No Credit grading only.

BRAE 500. Individual Study. 1-3 units
Prerequisite: Consent of instructor.

Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Total credit limited to 6 units, repeatable in same term.

BRAE 532. Water Wells and Pumps. 4 units
Prerequisite: BRAE 312 or BRAE 340 or CE 336 or ME 341.

Water well drilling, design, and development. Pump characteristics and system head. Series and parallel operation. Design of pump intakes. Variable speed electric drives and engines. Pump testing. 3 lectures, 1 laboratory.

BRAE 533. Irrigation Project Design. 4 units
Prerequisite: BRAE 340 or BRAE 312 or equivalent (hydraulics/fluid mechanics course).

Engineering solutions and social aspects of improved water delivery to farms and canal automation. Flow measurement. Water user associations. Unsteady canal and pipeline controls. PID controls and modeling. 3 lectures, 1 laboratory.

BRAE 570. Selected Advanced Topics in BioResource and Agricultural Engineering. 1-4 units
Prerequisite: Graduate standing or consent of instructor.

Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. The Class Schedule will list topic selected. Total credit limited to 12 units. 1 to 4 seminars.

BRAE 571. Selected Advanced Laboratory in Bioresources and Agricultural Engineering. 1-4 units
Prerequisite: Consent of instructor.

Directed group laboratory study of selected topics for advanced students. Open to undergraduate and graduate students. The Class Schedule will list topic selected. Total credit limited to 8 units. 1 to 4 laboratories.

BRAE 599. Thesis in BioResource and Agricultural Engineering. 1-9 units
Prerequisite: Graduate standing and consent of instructor.

Systematic research of a significant problem in bioresource and agricultural engineering. Thesis will include problem identification, significance, methods, data analysis, and conclusion. Students must enroll every quarter in which facilities are used or advisement is received. Degree credit limited to 6 units.